The impact of a benthic filter feeder: limitations imposed by physical transport of algae to the benthos

2005 ◽  
Vol 62 (1) ◽  
pp. 205-214 ◽  
Author(s):  
William J Edwards ◽  
Chris R Rehmann ◽  
Ellen McDonald ◽  
David A Culver

We used an acoustic Doppler profiler to investigate the hydrodynamics of a nearshore site in western Lake Erie, and we incorporated the measured parameters in numerical simulations of phytoplankton consumption by benthic zebra mussels (Dreissena polymorpha) to examine the link between pelagic production and benthic filter feeders. Daily-averaged eddy diffusivities varied from 10–5 to 10–4 m2·s–1 at our site. Our simulations demonstrate that diffusivities of this order decrease near-bed algal biomass, while algal biomass in the pelagic remains relatively unaffected. Between 8% and 67% of the algal biomass in the water column could be consumed daily, depending on the shape and magnitude of the diffusivity profile. Correspondingly, in situ vertical biomass profiles showed a near-bed zone of algal depletion, but no impact was observed near the surface. The impact of the zebra mussel in nearshore regions is expected to be stronger than in deeper open water. The flow of algal biomass into the benthos was tightly coupled with turbulent mixing, suggesting that open water algal consumption by zebra mussels is small compared with previously published estimates that ignored vertical turbulent mixing processes.

1997 ◽  
Vol 54 (7) ◽  
pp. 1630-1638 ◽  
Author(s):  
P L Klerks ◽  
P C Fraleigh ◽  
J E Lawniczak

This research demonstrated the impact of high densities of the zebra mussel (Dreissena polymorpha) on the cycling of copper, nickel, and zinc in a lake environment. Experiments with mussels on sedimentation traps in western Lake Erie and with mussels in flow-through tanks receiving Lake Erie water showed that zebra mussels remove metals from the water column, incorporate metals in their tissues, and deposit metals on the lake bottom. Removal of metals from the water column was estimated at 10-17% · day-1 of the amounts present. This material was largely deposited on the lake bottom; zebra mussels more than doubled the rate at which metals were being added to the lake bottom. Metal biodeposition rates were extremely high (e.g., 50 mg Zn · m-2 · day-1) in high-turbidity areas with elevated metal levels. Two factors contributed to metal biodeposition by zebra mussels. First, their production of feces and pseudofeces increased the rate at which suspended matter was being added to the sediment (accounting for 92% of the increased metal biodeposition). Second, the material coming out of suspension had higher metal concentrations when zebra mussels were present (constituting 8% of the increased biodeposition).


1998 ◽  
Vol 32 (24) ◽  
pp. 3862-3867 ◽  
Author(s):  
Heather A. Morrison ◽  
Frank A. P. C. Gobas ◽  
Rodica Lazar ◽  
D. Michael Whittle ◽  
G. Douglas Haffner

2000 ◽  
Vol 57 (3) ◽  
pp. 591-599 ◽  
Author(s):  
Marc E Frischer ◽  
Sandra A Nierzwicki-Bauer ◽  
Robert H Parsons ◽  
Kanda Vathanodorn ◽  
Kelli R Waitkus

Zebra mussels (Dreissena polymorpha) have had an enormous impact on aquatic environments. However, little is known concerning their interactions with microbial communities. In these studies, the ability of zebra mussels to derive nutrition from bacterioplankton and their effect on microbial community diversity were investigated in samples from the Hudson River, New York, and in laboratory studies. Clear physiological responses to starvation were observed, including decreases in respiration rates, lipid content, and total weight, that were reversed after feeding zebra mussels a diet of bacteria. Clearance rates of bacteria were correlated with bacteria size (r2= 0.995), with the lowest clearance rates associated with small indigenous river bacteria (size = 0.03 ± 0.04 µm3, clearance rate = 0.08 ± 0.02 mL·mussel-1·min-1). Comparison of the diversity of microbial communities in zebra mussel tissue extract, detritus, and pseudofecal material associated with zebra mussel colonies, surrounding water, and sediment samples revealed distinct microbial assemblages associated with these environments. The overall ecological effect and importance of bacteria - zebra mussel interactions remains unclear, but these studies indicate that these interactions occur and should be included in our efforts to better understand the impact of zebra mussels on aquatic systems.


2001 ◽  
Vol 58 (6) ◽  
pp. 1208-1221 ◽  
Author(s):  
Henry A Vanderploeg ◽  
James R Liebig ◽  
Wayne W Carmichael ◽  
Megan A Agy ◽  
Thomas H Johengen ◽  
...  

Microcystis aeruginosa, a planktonic colonial cyanobacterium, was not abundant in the 2-year period before zebra mussel (Dreissena polymorpha) establishment in Saginaw Bay (Lake Huron) but became abundant in three of five summers subsequent of mussel establishment. Using novel methods, we determined clearance, capture, and assimilation rates for zebra mussels feeding on natural and laboratory M. aeruginosa strains offered alone or in combination with other algae. Results were consistent with the hypothesis that zebra mussels promoted blooms of toxic M. aeruginosa in Saginaw Bay, western Lake Erie, and other lakes through selective rejection in pseudofeces. Mussels exhibited high feeding rates similar to those seen for a highly desirable food alga (Cryptomonas) with both large ( >53 µm) and small (<53 µm) colonies of a nontoxic and a toxic laboratory strain of M. aeruginosa known to cause blockage of feeding in zooplankton. In experiments with naturally occurring toxic M. aeruginosa from Saginaw Bay and Lake Erie and a toxic isolate from Lake Erie, mussels exhibited lowered or normal filtering rates with rejection of M. aeruginosa in pseudofeces. Selective rejection depended on "unpalatable" toxic strains of M. aeruginosa occurring as large colonies that could be rejected efficiently while small desirable algae were ingested.


2020 ◽  
Author(s):  
Prince P. Mathai ◽  
Jonathan H. Bertram ◽  
Soumesh K. Padhi ◽  
Vikash Singh ◽  
Isaiah E. Tolo ◽  
...  

AbstractHost-associated microbiota play a critical role in host fitness by providing nutrition, enhancing digestion capabilities, and by providing protection from pathogens. Here, we investigated the effects of two environmental stressors, temperature, and salinity, on the microbiota associated with zebra mussels (ZMs), a highly invasive bivalve in North America. To examine this in detail, lake-collected ZMs were acclimated to laboratory conditions, and subjected to temperature and salinity stress conditions. The impact of these stressors on the diversity, composition, and dynamics of ZM-associated microbiota were assessed by using amplicon- and shotgun-based sequencing, and qPCR-based approaches. Elevated temperature was found to be the primary driver of ZM mortality, although salinity alone also increased its likelihood. Stressor-induced ZM mortality, which ranged between 53 and 100%, was concomitant with significant increases in the relative abundance of several genera of putative opportunistic pathogens including Aeromonas. These genera were only present in low relative abundance in ZMs obtained from the control tank with 0% mortality. Shotgun sequencing and qPCR analyses indicated that the relative and absolute abundances of pathogenic Aeromonas species (particularly A. veronii) were significantly greater in temperature-induced dead ZMs. Taken together, our results show that environmental stress, especially elevated temperature (> 25 °C), is associated with the rapid mortality of ZMs as well as the proliferation of putative opportunistic bacterial pathogens.


2019 ◽  
Vol 16 (22) ◽  
pp. 4411-4428 ◽  
Author(s):  
Bryce R. Van Dam ◽  
Christian Lopes ◽  
Christopher L. Osburn ◽  
James W. Fourqurean

Abstract. The net ecosystem productivity (NEP) of two seagrass meadows within one of the largest seagrass ecosystems in the world, Florida Bay, was assessed using direct measurements over consecutive diel cycles during a short study in the fall of 2018. We report significant differences between NEP determined by dissolved inorganic carbon (NEPDIC) and by dissolved oxygen (NEPDO), likely driven by differences in air–water gas exchange and contrasting responses to variations in light intensity. We also acknowledge the impact of advective exchange on metabolic calculations of NEP and net ecosystem calcification (NEC) using the “open-water” approach and attempt to quantify this effect. In this first direct determination of NEPDIC in seagrass, we found that both seagrass ecosystems were net heterotrophic, on average, despite large differences in seagrass net above-ground primary productivity. NEC was also negative, indicating that both sites were net dissolving carbonate minerals. We suggest that a combination of carbonate dissolution and respiration in sediments exceeded seagrass primary production and calcification, supporting our negative NEP and NEC measurements. However, given the limited spatial (two sites) and temporal (8 d) extent of this study, our results may not be representative of Florida Bay as a whole and may be season-specific. The results of this study highlight the need for better temporal resolution, accurate carbonate chemistry accounting, and an improved understanding of physical mixing processes in future seagrass metabolism studies.


1995 ◽  
Vol 52 (12) ◽  
pp. 2574-2582 ◽  
Author(s):  
Heather Morrison ◽  
Rodica Lazar ◽  
G. Douglas Haffner ◽  
Tamara Yankovich

The elimination kinetics of 36 PCB congeners, ranging in log octanol–water partition coefficients (log Kow) from 5.60 to 7.50, were determined in zebra mussels (Dreissena polymorpha) with shell lengths from 1.0 to 1.5 cm. Elimination rate constants, based on lipid-normalized data, ranged from 0.172 to 0.042 day−1 and exhibited a significant negative regression with log Kow. Time to 95% steady state ranged from 17.5 to 71.0 days and was used to determine the period over which mussels integrated exposure concentrations. Bioavailable PCB congener concentrations, calculated with a steady-state model, were determined from mussels collected offshore of Middle Sister Island in western Lake Erie. Chemical concentrations in water, estimated using mussels, were within an order of magnitude of direct measurements for congeners with log Kow < 6.6. The rapid elimination kinetics of zebra mussels suggests that these organisms can closely track temporal fluctuations in ambient chemical concentrations, and therefore have the potential to regulate contaminant cycling in aquatic ecosystems.


2003 ◽  
Vol 60 (11) ◽  
pp. 1353-1368 ◽  
Author(s):  
Erik G Noonburg ◽  
Brian J Shuter ◽  
Peter A Abrams

The exotic zebra mussel (Dreissena polymorpha) has caused dramatic reductions in phytoplankton density in lakes with dense mussel populations. However, the indirect effects of this invader on other trophic groups have been inconsistent and difficult to interpret. In some lakes, zebra mussels appear to have had little effect on zooplankton density, despite decreasing the abundance of their phytoplankton prey. We analyze food web models to test hypothesized mechanisms for the absence of a strong effect of dreissenids on zooplankton. Our results suggest that neither reduced inedible algal interference with zooplankton filtering nor reduced phytoplankton self-shading is sufficient to explain the insensitivity of zooplankton populations to dreissenid competition. Instead, we show how the impact of benthic filter feeders can be influenced by the rate of mixing within a basin, which limits phytoplankton delivery to the benthos. We explore the predictions of a simple spatially structured model and demonstrate that differences in abiotic factors that control mixing can result in large differences in direct and indirect effects of zebra mussel filtering.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 991
Author(s):  
Adriana Giangrande ◽  
Maria Flavia Gravina ◽  
Sergio Rossi ◽  
Caterina Longo ◽  
Cataldo Pierri

In this paper, the different possibilities and innovations related to sustainable aquaculture in the Mediterranean area are discussed, while different maricultural methods, and the role of Integrated Multi-Trophic Aquaculture (IMTA) in supporting the exploitation of the ocean’s resources, are also reviewed. IMTA, and mariculture in general, when carefully planned, can be suitable for environmental restoration and conservation purposes. Aquaculture, especially mariculture, is a sector that is progressively increasing in parallel with the increase in human needs; however, several problems still affect its development, mainly in relation to the choice of suitable sites, fodder production, and the impact on the surrounding environment. A current challenge that requires suitable solutions is the implementation of IMTA. Unfortunately, some criticisms still affect this approach, mostly concerning the commercialization of new products such as invertebrates and seaweeds, notwithstanding their environmentally friendly character. Regarding the location of a suitable site, mariculture plans are currently displaced from inshore to offshore, with the aim of reducing the competition for space with other human activities carried out within coastal waters. Moreover, in open water, waste loading does not appear to be a problem, but high-energy waters increase maintenance costs. Some suggestions are given for developing sustainable mariculture in the Mediterranean area, where IMTA is in its infancy and where the scarce nutrients that characterize offshore waters are not suitable for the farming of both filter feeder invertebrates and macroalgae. From the perspective of coupling mariculture activity with restoration ecology, the practices suggested in this review concern the implementation of inshore IMTA, creating artificially controlled gardens, as well as offshore mussel farming coupled with artificial reefs, while also hypothesizing the possibility of the use of artificially eutrophized areas.


Sign in / Sign up

Export Citation Format

Share Document