Empirical model for predicting a catchment-scale metric of surface water transit time in streams

2005 ◽  
Vol 62 (3) ◽  
pp. 492-504 ◽  
Author(s):  
Erwin E Van Nieuwenhuyse

Estimates of average water velocity (vw) extracted from tracer dye studies (vdye) or calculated from velocity–discharge relationships at continuous-flow gauges (vgage) were combined with catchment area (A) and other readily available data for 111 streams throughout the conterminous United States. The resulting data set (n = 305) represented broad ranges of A (65 – 62 419 km2), mainstem length (Lmax, 15.6–867 km), slope (S, 0.14–11.5 m·km–1), and daily average discharge (Q, 0.09–634 m3·s–1). A catchment-scale metric of surface water transit time (Tw, Lmaxvdye–1) ranged from 0.3 to 40 days, averaging 7.2 days. A bivariate regression model using log10 A and log10 Q explained 83% of the variation in log10 Tw and predicted Tw with an average precision of ±49%. By contrast, a previously published model based on hydraulic geometry relationships overestimated Tw by 100%. Application of my model to five streams nested in a ninth-order (ω = 9) catchment indicated that under dry (September) and wet (March), long-term (1954–2001) median flow conditions, vw increased with Q (vw ∝ Q0.3) as far downstream as ω = 8 and then remained constant or declined. The slope of this longitudinal vw–Q relationship was three times greater than the expected value. Longitudinal velocity gradients in many streams may thus be much steeper than commonly assumed.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rachel M. Pilla ◽  
Craig E. Williamson ◽  
Boris V. Adamovich ◽  
Rita Adrian ◽  
Orlane Anneville ◽  
...  

AbstractGlobally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.


2020 ◽  
Author(s):  
Matthias Sprenger ◽  
Pilar Llorens ◽  
Francesc Gallart ◽  
Jérôme Latron

<p>Investigations at the long-term experimental catchment Vallcebre in the Pyrenees revealed that rainfall-runoff dynamics are highly variable due to the Mediterranean climatic conditions affecting the storage and release of water in the subsurface<sup>1</sup>. In a changing climate, to the consequences of which could lead to more variations in catchment wetness due to an increase in both droughts and high intensity rainfalls, there is a strong need to better understand subsurface storage and runoff processes.</p><p>While our previous isotope studies (using <sup>2</sup>H and <sup>18</sup>O) demonstrated a pronounced heterogeneity of water flow in the unsaturated zone at the plot scale<sup>2</sup>, we also observed that the contributions of young waters to catchment runoff are highly dependent on the catchments wetness<sup>3</sup>. These analyses provided a basis from which we present new insights into the relationship between subsurface runoff and storage dynamics applying StorAge Selection functions<sup>4</sup> and end-member splitting analysis<sup>5</sup>. Thus, we combined modeling and data-driven approaches to disentangle the partitioning of subsurface waters into storage and runoff based on water age dynamics.</p><p>We gathered an extensive isotope data set with >550 rainfall samples and >980 stream samples taken at high temporal resolution (30 minutes to one week), with highest frequencies during high discharge to improve the coverage of rainfall-runoff events. Using this high-frequency isotope data set, we calibrated the StorAge Selection functions and put special emphasis on the representation of the isotopic response during high flow rainfall-runoff periods. We further tested if time-variant representations of StorAge Selection functions dependent on varying wetness improves the stream water isotope simulations and the ways in which isotope data from different compartments (groundwater and tree water) can assist in constraining the parameter space. Furthermore, end-member splitting analysis provided an independent view into the flow dynamics based on these long-term isotope data sets. As such, the analysis allowed us to derive estimates of the dynamics of rainfall partitioning into runoff and evapotranspiration. Therefore, the combination of the modeling and data-driven approaches enabled an assessment of the dynamics of subsurface runoff at the catchment scale underlining the relevance of heterogeneous flow pattern that were observed on the plot scale.</p><p>References</p><ol><li>Llorens, P. et al. What have we learnt about mediterranean catchment hydrology? 30 years observing hydrological processes in the Vallcebre research catchments. Geogr. Res. Lett. <strong>44, </strong>475–502; 10.18172/cig.3432 (2018).</li> <li>Sprenger, M., Llorens, P., Cayuela, C., Gallart, F. & Latron, J. Mechanisms of consistently disjunct soil water pools over (pore) space and time. Hydrol. Earth Syst. Sci. <strong>23, </strong>2751–2762; 10.5194/hess-23-2751-2019 (2019).</li> <li>Gallart, F. et al. Investigating young water fractions in a small Mediterranean mountain catchment: both precipitation forcing and sampling frequency matter. Hydrol. Process. (in review).</li> <li>Benettin, P. & Bertuzzo, E. tran-SAS v1.0: a numerical model to compute catchment-scale hydrologic transport using StorAge Selection functions. Geosci. Model Dev. <strong>11, </strong>1627–1639; 10.5194/gmd-11-1627-2018 (2018).</li> <li>Kirchner, J. W. & Allen, S. T. Seasonal partitioning of precipitation between streamflow and evapotranspiration, inferred from end-member splitting analysis. Hydrology and Earth System Sciences, <strong>24</strong>, 17–39; 10.5194/hess-24-17-2020 (2020).</li> </ol>


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1923
Author(s):  
Sachin Karan ◽  
Martin Jacobsen ◽  
Jolanta Kazmierczak ◽  
José A. Reyna-Gutiérrez ◽  
Thomas Breum ◽  
...  

The effects of streams and drainage representation in 3D numerical catchment scale models on estimated streamflow contribution were investigated. MODFLOW-USG was used to represent complex geology and a stream network with two different conceptualizations—one with equal cell discretization in the entire model domain and another with refined cell discretization along stream reaches. Both models were calibrated against a large data set including hydraulic heads and streamflow measurements. Though the optimized hydraulic parameters and statistical performance of both model conceptualizations were comparable, their estimated streamflow contribution differed substantially. In the conceptualization with equal cell discretization, the drainage contribution to the streamflow was 13% compared to 41% in the conceptualization with refined cell discretization. The increase in drainage contribution to streamflow was attributed to the increase in drainage area in proximity to the stream reaches arising from the refined discretization. e.g., the cell refinement along stream reaches reduced the area occupied by stream cells allowing for increased drain area adjacent to the stream reaches. As such, an increase in drainage area equivalent to 7% yielded a 146% increase in drainage contribution to streamflow. In-stream field measurements of groundwater-surface water exchange fluxes that were qualitatively compared to calculated fluxes from the models indicated that estimates from the refined model discretization were more representative. Hence, the results of this study accentuate the importance of being able to represent stream and drain flow contribution correctly, that is, to achieve representative exchange fluxes that are crucial in simulating groundwater–surface water exchange of both flow and solute transport in catchment scale modeling. To that end, the in-stream measurements of exchange fluxes showed the potential to serve as a proxy to numerically estimate drainage contribution that is not readily available at the catchment scale.


2022 ◽  
Author(s):  
Paul M. Mayer ◽  
Michael J. Pennino ◽  
Tammy A. Newcomer-Johnson ◽  
Sujay S. Kaushal

AbstractStream restoration is a popular approach for managing nitrogen (N) in degraded, flashy urban streams. Here, we investigated the long-term effects of stream restoration involving floodplain reconnection on riparian and in-stream N transport and transformation in an urban stream in the Chesapeake Bay watershed. We examined relationships between hydrology, chemistry, and biology using a Before/After-Control/Impact (BACI) study design to determine how hydrologic flashiness, nitrate (NO3−) concentrations (mg/L), and N flux, both NO3− and total N (kg/yr), changed after the restoration and floodplain hydrologic reconnection to its stream channel. We examined two independent surface water and groundwater data sets (EPA and USGS) collected from 2002–2012 at our study sites in the Minebank Run watershed. Restoration was completed during 2004 and 2005. Afterward, the monthly hydrologic flashiness index, based on mean monthly discharge, decreased over time from 2002 and 2008. However, from 2008–2012 hydrologic flashiness returned to pre-restoration levels. Based on the EPA data set, NO3− concentration in groundwater and surface water was significantly less after restoration while the control site showed no change. DOC and NO3− were negatively related before and after restoration suggesting C limitation of N transformations. Long-term trends in surface water NO3− concentrations based on USGS surface water data showed downward trends after restoration at both the restored and control sites, whereas specific conductance showed no trend. Comparisons of NO3− concentrations with Cl− concentrations and specific conductance in both ground and surface waters suggested that NO3− reduction after restoration was not due to dilution or load reductions from the watershed. Modeled NO3− flux decreased post restoration over time but the rate of decrease was reduced likely due to failure of restoration features that facilitated N transformations. Groundwater NO3− concentrations varied among stream features suggesting that some engineered features may be functionally better at creating optimal conditions for N retention. However, some engineered features eroded and failed post restoration thereby reducing efficacy of the stream restoration to reduce flashiness and NO3− flux. N management via stream restoration will be most effective where flashiness can be reduced and DOC made available for denitrifiers. Stream restoration may be an important component of holistic watershed management including stormwater management and nutrient source control if stream restoration and floodplain reconnection can be done in a manner to resist the erosive effects of large storm events that can degrade streams to pre-restoration conditions. Long-term evolution of water quality functions in response to degradation of restored stream channels and floodplains from urban stressors and storms over time warrants further study, however.


1988 ◽  
Vol 19 (2) ◽  
pp. 99-120 ◽  
Author(s):  
A. Lepistö ◽  
P. G. Whitehead ◽  
C. Neal ◽  
B. J. Cosby

A modelling study has been undertaken to investigate long-term changes in surface water quality in two contrasting forested catchments; Yli-Knuutila, with high concentrations of base cations and sulphate, in southern Finland; and organically rich, acid Liuhapuro in eastern Finland. The MAGIC model is based on the assumption that certain chemical processes (anion retention, cation exchange, primary mineral weathering, aluminium dissolution and CO2 solubility) in catchment soils are likely keys to the responses of surface water quality to acidic deposition. The model was applied for the first time to an organically rich catchment with high quantities of humic substances. The historical reconstruction of water quality at Yli-Knuutila indicates that the catchment surface waters have lost about 90 μeq l−1 of alkalinity in 140 years, which is about 60% of their preacidification alkalinity. The model reproduces the declining pH levels of recent decades as indicated by paleoecological analysis. Stream acidity trends are investigated assuming two scenarios for future deposition. Assuming deposition rates are maintained in the future at 1984 levels, the model indicates that stream pH is likely to continue to decline below presently measured levels. A 50% reduction in deposition rates would likely result in an increase in pH and alkalinity of the stream, although not to estimated preacidification levels. Because of the high load of organic acids to the Liuhapuro stream it has been acid before atmospheric pollution; a decline of 0.2 pH-units was estimated with increasing leaching of base cations from the soil despite the partial pH buffering of the system by organic compounds.


2007 ◽  
Vol 7 (3) ◽  
pp. 103-110
Author(s):  
C. Schilling ◽  
M. Zessner ◽  
A.P. Blaschke ◽  
D. Gutknecht ◽  
H. Kroiss

Two Austrian case study regions within the Danube basin have been selected for detailed investigations of groundwater and surface water quality at the catchment scale. Water balance calculations have been performed using the conceptual continuous time SWAT 2000 model to characterise catchment hydrology and to identify individual runoff components contributing to river discharge. Nitrogen emission calculations have been performed using the empirical emission model MONERIS to relate individual runoff components to specific nitrogen emissions and for the quantification of total nitrogen emissions to surface waters. Calculated total nitrogen emissions to surface waters using the MONERIS model were significantly influenced by hydrological conditions. For both catchments the groundwater could be identified as major emission pathway of nitrogen emissions to the surface waters. Since most of the nitrogen is emitted by groundwater to the surface water, denitrification in groundwater is of considerable importance reducing nitrogen levels in groundwater along the flow path towards the surface water. An approach was adopted for the grid-oriented estimation of diffuse nitrogen emissions based on calculated groundwater residence time distributions. Denitrification in groundwater was considered using a half life time approach. It could be shown that more than 90% of the total diffuse nitrogen emissions were contributed by areas with low groundwater residence times and short distances to the surface water. Thus, managing diffuse nitrogen emissions the location of catchment areas has to be considered as well as hydrological and hydrogeological conditions, which significantly influence denitrification in the groundwater and reduce nitrogen levels in groundwater on the flow path towards the surface water.


1989 ◽  
Vol 21 (8-9) ◽  
pp. 1015-1024 ◽  
Author(s):  
C. P. Crockett ◽  
R. W. Crabtree ◽  
I. D. Cluckie

In England and Wales the placing of effluent discharge consents within a statistical framework has led to the development of a new hybrid type of river quality model. Such catchment scale consent models have a stochastic component for the generation of model inputs and a deterministic component to route them through the river system. This paper reviews and compares the existing approaches for consent modelling used by various Water Authorities. A number of possible future developments are suggested including the potential need for a national approach to the review and setting of long term consents.


2021 ◽  
pp. 108602662110316
Author(s):  
Tiziana Russo-Spena ◽  
Nadia Di Paola ◽  
Aidan O’Driscoll

An effective climate change action involves the critical role that companies must play in assuring the long-term human and social well-being of future generations. In our study, we offer a more holistic, inclusive, both–and approach to the challenge of environmental innovation (EI) that uses a novel methodology to identify relevant configurations for firms engaging in a superior EI strategy. A conceptual framework is proposed that identifies six sets of driving characteristics of EI and two sets of beneficial outcomes, all inherently tensional. Our analysis utilizes a complementary rather than an oppositional point of view. A data set of 65 companies in the ICT value chain is analyzed via fuzzy-set comparative analysis (fsQCA) and a post-QCA procedure. The results reveal that achieving a superior EI strategy is possible in several scenarios. Specifically, after close examination, two main configuration groups emerge, referred to as technological environmental innovators and organizational environmental innovators.


Sign in / Sign up

Export Citation Format

Share Document