Relationship between spat density, food availability, and growth of spawners in cultured Mizuhopecten yessoensis in Funka Bay: concurrence with El Niño Southern Oscillation

2009 ◽  
Vol 66 (1) ◽  
pp. 6-17 ◽  
Author(s):  
Katsuhisa Baba ◽  
Rieko Sugawara ◽  
Hisashi Nitta ◽  
Kiyoshi Endou ◽  
Akira Miyazono

To elucidate the factors that influence the interannual variation in the density of cultured Japanese scallop ( Mizuhopecten yessoensis ) spat, we analyzed the relationship between spat density (Ds), monthly chlorophyll a (chl a) concentration, water temperature, and adductor muscle weight of spawners over 15 years (1992–2006) in Funka Bay (Japan) on the western North Pacific Ocean. The interannual variation of spat density was best explained by a campaniform model that used chl a concentration in February ([chl]Feb) and a categorical variable that indicates whether growth of spawners in a year is low or not as independent variables (R2 = 0.91). The gonadosomatic index increased fastest in February. Low growth years were detected as outliers in the Ds – [chl]Feb relationship and were characterized by an average weight of adductor muscles in February of <12 g. Therefore, food availability during gonadal development and growth conditions of spawners were the main factors determining spat density. The proportion of ovary necrosis was high in the years of low [chl]Feb and low growth. Those years corresponded with El Niño and La Niña years, respectively. Thus, global climatic anomalies apparently affect reproduction of the scallop in Funka Bay.


2017 ◽  
Vol 23 (11) ◽  
pp. 4706-4716 ◽  
Author(s):  
Qiuan Zhu ◽  
Changhui Peng ◽  
Philippe Ciais ◽  
Hong Jiang ◽  
Jinxun Liu ◽  
...  


2017 ◽  
Vol 30 (6) ◽  
pp. 1909-1922 ◽  
Author(s):  
Seok-Woo Son ◽  
Yuna Lim ◽  
Changhyun Yoo ◽  
Harry H. Hendon ◽  
Joowan Kim

Abstract Interannual variation of seasonal-mean tropical convection over the Indo-Pacific region is primarily controlled by El Niño–Southern Oscillation (ENSO). For example, during El Niño winters, seasonal-mean convection around the Maritime Continent becomes weaker than normal, while that over the central to eastern Pacific is strengthened. Similarly, subseasonal convective activity, which is associated with the Madden–Julian oscillation (MJO), is influenced by ENSO. The MJO activity tends to extend farther eastward to the date line during El Niño winters and contract toward the western Pacific during La Niña winters. However, the overall level of MJO activity across the Maritime Continent does not change much in response to the ENSO. It is shown that the boreal winter MJO amplitude is closely linked with the stratospheric quasi-biennial oscillation (QBO) rather than with ENSO. The MJO activity around the Maritime Continent becomes stronger and more organized during the easterly QBO winters. The QBO-related MJO change explains up to 40% of interannual variation of the boreal winter MJO amplitude. This result suggests that variability of the MJO and the related tropical–extratropical teleconnections can be better understood and predicted by taking not only the tropospheric circulation but also the stratospheric mean state into account. The seasonality of the QBO–MJO link and the possible mechanism are also discussed.



2018 ◽  
Vol 19 (3) ◽  
pp. 793-801 ◽  
Author(s):  
QURNIA WULAN SARI ◽  
EKO SISWANTO ◽  
DEDI SETIABUDIDAYA ◽  
INDRA YUSTIAN ◽  
ISKHAQ ISKANDAR

Sari QW, Siswanto E, Setiabudidaya D, Yustian I, Iskandar I. 2018. Spatial and temporal variability of surface chlorophyll-a in the Gulf of Tomini, Sulawesi, Indonesia. Biodiversitas 19: 793-801. The Gulf of Tomini (GoT) is mostly influenced by seasonal and interannual events. So, the immensive aim of this study is to explore spatial and temporal variations of chlorophyll-a (chl-a) and oceanographic parameters in the GoT under the influences of monsoonal winds, El Niño Southern Oscillation (ENSO), and Indian Ocean Dipole (IOD). The data were collected from the satellite imaging of chl-a and sea and surface temperature (SST) as well as surface wind from the reanalysis data for a period of January 2003 to December 2015. Monthly variations of the chl-a and SST in the GoT reveal chl-a bloom in the center part to the mouth of the GoT during the southeast monsoon season (boreal summer). The chl-a concentrations were relatively higher (>0.1 mg m-3) and distributed throughout most of the areas near the Maluku Sea. The SST in the middle of the GoT was relatively lower than that near the Maluku Sea (the eastern part of the GoT). On the other hand, during the northwest monsoon (boreal winter), the chl-a concentration decreased (<0.1 mg m-3). During this season, the SST was relatively higher (28-29 °C) than that during the boreal summer (27-26 °C) and distributed uniformly. Meanwhile, on interannual timescale, the ENSO and IOD play important role in regulating chl-a distribution in the GoT. High surface chl-a concentration was observed during El Niño and/or positive IOD events. Enhanced surface chl-a concentration during El Niño and/or positive IOD events was associated with the upward Ekman pumping induced by the southeasterly wind anomalies. The situation was reversed during the Niña and/or negative IOD events.



2017 ◽  
Vol 30 (22) ◽  
pp. 8845-8864 ◽  
Author(s):  
Li Tao ◽  
Tim Li ◽  
Yuan-Hui Ke ◽  
Jiu-Wei Zhao

A Pacific–Japan (PJ) pattern index is defined based on the singular value decomposition (SVD) analysis of summertime 500-hPa height in East Asia and precipitation in the tropical western North Pacific (WNP). The time series of this PJ index shows clearly the interannual and interdecadal variations since 1948. Idealized atmospheric general circulation model (AGCM) experiments were carried out to understand the remote and local SST forcing in causing the interannual variations of the PJ pattern and interdecadal variations of the PJ-like pattern. It is found that the PJ interannual variation is closely related to El Niño–Southern Oscillation (ENSO). A basinwide warming occurs in the tropical Indian Ocean (TIO) during El Niño mature winter. The TIO warming persists from the El Niño peak winter to the succeeding summer. Meanwhile, a cold SST anomaly (SSTA) appears in the eastern WNP and persists from the El Niño mature winter to the succeeding summer. Idealized AGCM experiments that separate the TIO and WNP SSTA forcing effects show that both the remote eastern TIO forcing and local WNP SSTA forcing are important in affecting atmospheric heating anomaly in the WNP monsoon region, which further impacts the PJ interannual teleconnection pattern over East Asia. In contrast to the interannual variation, the interdecadal change of the PJ-like pattern is primarily affected by the interdecadal change of SST in the TIO rather than by the local SSTA in the WNP.



2020 ◽  
Vol 12 (3) ◽  
pp. 833
Author(s):  
Yang Liu ◽  
Yongjun Tian ◽  
Sei-Ichi Saitoh ◽  
Irene D. Alabia ◽  
Kan-Ichiro Mochizuki

The assessment of extreme weather events on suitable sites for aquaculture could help in establishing sustainable coastal environmental resource management. Japanese scallop culture is an economically important marine farming activity in the coastal communities of Shandong, China and Funka Bay, Japan. In this study, we improved the suitable aquaculture site-selection model (SASSM) by using Geostationary Ocean Color Imager (GOCI) data instead of Moderate Resolution Imaging Spectroradiometer (MODIS) data, as a complementary source for higher temporal and spatial resolution data that are useful for monitoring fine-scale coastal and oceanic processes. We also applied the newly developed SASSM to the Japanese scallop production site along the Shandong coast. Finally, we analyzed the correlations between environmental factors (chlorophyll a concentration, sea surface temperature (SST), and total suspended sediment), meteorological factors (precipitation, temperature, and wind), and climatic events (winter East Asian monsoon (EAM) and El Niño/La Niña Southern Oscillation), and the impacts of climate events on suitable zones for scallop aquaculture. The new SASSM maps show that GOCI products have the potential for oceanographic investigations in Shandong, China and Funka Bay, Japan. Our results highlighted higher aquaculture site suitability for scallop in Funka Bay than in Shandong coast. During the winter with a strong EAM (2011), the suitable area for Japanese scallop aquaculture increased. Conversely, in the winter during a strong El Niño (2016), we found fewer areas that were highly suitable for scallop aquaculture in Funka Bay. SST was extremely low in Funka Bay during spring and summer 2017, which caused fewer highly suitable areas (scores of 7 and 8) for scallop aquaculture relative to other years. These findings suggest that extreme climatic events significantly impact the availability of suitable sites for marine farming and thus, should be considered in the development and design of coastal aquaculture sites.



2003 ◽  
Vol 81 (6) ◽  
pp. 1004-1013 ◽  
Author(s):  
A MA Harding ◽  
J F Piatt ◽  
K C Hamer

Both within and among seabird species, different aspects of breeding biology may respond to changes in prey availability in distinct ways, and the identification of species-specific breeding parameters that are sensitive to food availability is useful for monitoring purposes. We present data from a 5-year study (1995–1999) of the breeding ecology of Horned Puffins (Fratercula corniculata) in Alaska. The El Niño – Southern Oscillation event of 1997–1998 provided an opportunity to examine the sensitivity of various breeding parameters to a reduction in prey availability caused by the anomalous oceanographic conditions of 1998. Horned Puffins were able to maintain high fledging success (83–97%) over the 5 years of the study, despite the poor local feeding conditions in 1998. The rate of increase in chick mass was lowest in 1998, and evidence suggests that chicks also fledged at the youngest ages in that year. The impacts of reduced food availability on growth varied among body structures, suggesting differential allocation of energy and nutrients. There was no variation among years in either chick diet or the mass of food loads delivered by adults. We suggest that rates of chick growth, specifically mass increase, may be a good parameter to measure for use in monitoring Horned Puffins.



2021 ◽  
pp. 1-47
Author(s):  
XIAODAN YANG ◽  
YAJUAN SONG ◽  
MENG WEI ◽  
YUHUAN XUE ◽  
ZHENYA SONG

AbstractIn this paper, the different effects of the eastern equatorial Pacific (EP) and central equatorial Pacific (CP) El Niño-Southern Oscillation (ENSO) events on interannual variation in the diurnal sea surface temperature (SST) are explored in both the Niño 3 and Niño 4 regions. In the Niño 3 region, the diurnal SST anomaly (DSSTA) is negative during both EP and CP El Niño events and becomes positive during both EP and CP La Niña events. However, the DSSTA in the Niño 4 region is positive in El Niño years and negative in La Niña years, which is opposite to that in the Niño 3 region. Further analysis indicates that the incident shortwave radiation (SWR), wind stress (WS), and upward latent heat flux (LHF) are the main factors causing the interannual variation in the DSST. In the Niño 3 region, the decreased/increased SWR and the increased (decreased) LHF lead to the negative (positive) DSSTA in EP El Niño (La Niña) years. In addition, the enhanced (reduced) WS and the increased (decreased) LHF cause the negative (positive) DSSTA in CP El Niño (La Niña) years. In the Niño 4 region, the reduced (enhanced) trade wind plays a key role in producing in the positive (negative) DSSTA, while the decreased (increased) SWR has an opposite effect that reduces/increases the range of the DSSTA during both EP and CP El Niño (La Niña) events.



2013 ◽  
Vol 13 (10) ◽  
pp. 25567-25615
Author(s):  
L. Huang ◽  
R. Fu ◽  
J. H. Jiang

Abstract. Carbon monoxide (CO) is an important tracer to study the transport of fire-generated pollutants from the surface to the upper troposphere (UT). This study analyzed the relative importance of fire emission, convection and climate conditions on the interannual variation of CO in the tropical UT, by using satellite observations, reanalysis data and transport pathway auto-identification method developed in our previous study. Empirical orthogonal function (EOF) and singular value decomposition (SVD) methods are used to identify the dominant modes of CO interannual variation in the tropical UT and factors that are related to these modes. Results show that the leading EOF mode is dominated by CO anomalies over Indonesia related to El Niño-Southern Oscillation (ENSO). This is consistent with previous findings by directly evaluating CO anomaly field. Transport pathway analysis suggests that the differences of UT CO between different ENSO types over the tropical continents are mainly dominated by the "local convection" pathway, especially the average CO transported by this pathway. The relative frequency of the "advection within the lower troposphere (LT) followed by convective vertical transport" pathway appears to be responsible only for the UT CO differences over the west-central Pacific between El Niño and La Niña years.



Sign in / Sign up

Export Citation Format

Share Document