Modelling Winter Oxygen Depletion Rates in Ice-Covered Temperate Zone Lakes in Canada

1985 ◽  
Vol 42 (2) ◽  
pp. 239-249 ◽  
Author(s):  
J. Babin ◽  
E. E. Prepas

Winter oxygen depletion rates (WODR) (g O2∙m−2∙d−1) were determined for 13 lakes in central Alberta during the winter of 1982–83. Although dissolved oxygen decreased in all lakes for the first 3.5 mo after freeze-up, the decreases were nonlinear. The highest WODR were observed just after freeze-up. The nonlinear WODR were significantly correlated with two estimates of lake productivity (i.e. total phosphorus and chlorophyll a, P < 0.05) but were not significantly correlated with morphometry (e.g. mean depth). When the WODR from the Albertan lakes were treated as linear, to enable a comparison with other studies, correlations were found between WODR and morphometry, and WODR and estimates of summer productivity. These relationships were significantly different from observations by previous investigators who worked on ice-covered lakes in two other regions. When data from other ice-covered lakes were combined with this study, WODR were best predicted from a combination of mean summer TP (TPsu in mg∙m−2) in the euphotic zone and mean depth ([Formula: see text] in m):[Formula: see text]The above equation permits the prediction of WODR for a greater range of lake types than previous models.

1984 ◽  
Vol 41 (2) ◽  
pp. 351-363 ◽  
Author(s):  
E. E. Prepas ◽  
J. Vickery

Particulate phosphorus (PP) > 250 μm was concentrated in the euphotic zone of 17 lakes in central Alberta. When the euphotic zone extended below the epilimnion, PP >250 μm was concentrated deep in the euphotic zone. PP > 250 μm was a significant but variable portion of the total phosphorus (TP) pool in individual lakes; thus, samples should be collected from the euphotic zone on several dates to estimate the contribution of PP > 250 μm to the TP pool. As well, the contribution of this fraction varied among lakes: average summer values for the euphotic zone ranged from 3 to 19%. Among lakes, the contribution of large particles to the TP pool decreased proportionally as lake productivity (estimated by chlorophyll a (Chl a)) increased. The relative contribution of PP > 250 μm in summer accounted for a significant portion of the residual variation in the spring TP-summer Chl a relationship but not the summer TP-summer Chl a relationship in the study lakes. These apparently contradictory results can be explained by differences between lakes that mixed intermittently throughout the summer and those that remained permanently thermally stratified during this time.


1988 ◽  
Vol 45 (3) ◽  
pp. 571-576 ◽  
Author(s):  
Annette M. Trimbee ◽  
E. E. Prepas

Areal rates of hypolimnetic oxygen depletion (AHOD) and winter oxygen depletion (AWOD) varied considerably from year to year in a partially meromictic lake (Narrow Lake) in central Alberta. AHOD ranged from 0.222 to 0.522 g O2∙m−2∙d−1 over four summers and AWOD ranged from 0.354 to 0.614 g O2∙m−2∙d−1 over three winters. AHOD was positively correlated with maximum storage of dissolved oxygen (O2) at the onset of summer thermal stratification (P < 0.05). Similarly, AWOD was higher in years when mixing was more complete and maximum O2 storage at freeze-up was higher. These results suggest that the prediction of O2 depletion rates for lakes with year-to-year variation in maximum O2 storage can be improved if maximum O2 storage after lake mixing is considered in addition to other factors known to influence O2 depletion rates such as lake productivity and morphometry.


Author(s):  
Qianming Dou ◽  
Xue Du ◽  
Yanfeng Cong ◽  
Le Wang ◽  
Chen Zhao ◽  
...  

The characteristics of macroinvertebrate community structure can effectively reflect the health status of lake ecosystem and the quality of the lake ecological environment. It is of great significance to identify the limiting factors of macroinvertebrate community structure for the maintenance of lake ecosystem health. In this study, the community composition of macroinvertebrate assemblages and their relationships with environmental variables in 13 small lakes within Linhuan Lake was investigated. Self-organizing map, K-means clustering analysis, principal component analysis, pearson correlation analysis, and redundancy analysis were used to analyze the correlation and variability between macroinvertebrates community index and environmental factors. The results showed that the environmental variables (pH, total phosphorus, nitrate, water temperature, dissolved oxygen, conductivity, chemical oxygen demand, and ammonium) had a significant effect on the classification of macroinvertebrate community. Molluscs were significantly negatively correlated with pH and chlorophyll a, while annelids and aquatic insects were significantly positively correlated with chlorophyll a and dissolved oxygen. Species richness and Shannon’s diversity of macroinvertebrates were significantly negatively correlated with total phosphorus while biomass of macroinvertebrates was significantly negatively correlated with pH. High alkalinity characteristics and eutrophication of the lake have a serious impact on the macroinvertebrate community. Human interference and unreasonable industrial and surface runoff from agricultural farms destroy the ecological environment and affect the community structure of macroinvertebrate. Thus, the improvement of the macroinvertebrate’s community structure should be carried out by improving the Lianhuan Lake watershed ecological environment and controlling watershed environmental pollution.


2017 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Kusuma Wardani Laksitaningrum ◽  
Wirastuti Widyatmanti

<p align="center"><strong>ABSTRAK</strong></p><p class="abstrak">Waduk Gajah Mungkur (WGM) adalah bendungan buatan yang memiliki luas genangan maksimum 8800 ha, terletak di Desa Pokoh Kidul, Kecamatan Wonogiri, Kabupaten Wonogiri. Kondisi perairan WGM dipengaruhi oleh faktor klimatologis, fisik, dan aktivitas manusia yang dapat menyumbang nutrisi sehingga mempengaruhi status trofiknya. Tujuan dari penelitian ini adalah mengkaji kemampuan citra Landsat 8 OLI untuk memperoleh parameter-parameter yang digunakan untuk menilai status trofik, menentukan dan memetakan status trofik yang diperoleh dari citra Landsat 8 OLI, dan mengevaluasi hasil pemetaan dan manfaat citra penginderaan jauh untuk identifikasi status trofik WGM. Identifikasi status trofik dilakukan berdasarkan metode <em>Trophic State Index</em> (TSI) Carlson (1997) menggunakan tiga parameter yaitu kejernihan air, total fosfor, dan klorofil-a. Model yang diperoleh berdasar pada rumus empiris dari hasil uji regresi antara pengukuran di lapangan dan nilai piksel di citra Landsat 8 OLI. Model dipilih berdasarkan nilai koefisien determinasi (R<sup>2</sup>) tertinggi. Hasil penelitian merepresentasikan bahwa nilai R<sup>2</sup> kejernihan air sebesar 0,813, total fosfor sebesar 0,268, dan klorofil-a sebesar 0,584. Apabila nilai R<sup>2 </sup>mendekati 1, maka semakin baik model regresi dapat menjelaskan suatu parameter status trofik. Berdasarkan hasil kalkulasi diperoleh distribusi yang terdiri dari kelas eutrofik ringan, eutrofik sedang, dan eutrofik berat yaitu pada rentang nilai indeks 50,051 – 80,180. Distribusi terbesar adalah eutrofik sedang. Hal tersebut menunjukkan tingkat kesuburan perairan yang tinggi dan dapat membahayakan makhluk hidup lain.</p><p><strong>Kata kunci: </strong>Waduk Gajah Mungkur, citra Landsat 8 OLI, regresi, TSI, status trofik</p><p class="judulABS"><strong>ABSTRACT</strong></p><p class="Abstrakeng">Gajah Mungkur Reservoir is an artificial dam that has a maximum inundated areas of 8800 ha, located in Pokoh Kidul Village, Wonogiri Regency. The reservoir’s water conditions are affected by climatological and physical factors, as well as human activities that can contribute to nutrients that affect its trophic state. This study aimed to assess the Landsat 8 OLI capabilities to obtain parameters that are used to determine its trophic state, identifying and mapping the trophic state based on parameters derived from Landsat 8 OLI, and evaluating the results of the mapping and the benefits of remote sensing imagery for identification of its trophic state. Identification of trophic state is based on Trophic State Index (TSI) Carlson (1997), which uses three parameters there are water clarity, total phosphorus, and chlorophyll-a. The model is based on an empirical formula of regression between measurements in the field and the pixel values in Landsat 8 OLI. Model is selected on the highest value towards coefficient of determination (R<sup>2</sup>). The results represented that R<sup>2</sup> of water clarity is 0.813, total phosphorus is 0.268, and chlorophyll-a is 0.584. If R<sup>2</sup> close to 1, regression model will describe the parameters of the trophic state better. Based on the calculation the distribution consists of mild eutrophic, moderate eutrophic, and heavy eutrophic that has index values from 50.051 to 80.18. The most distribution is moderate eutrophication, and it showed the high level of trophic state and may harm other living beings.</p><p><strong><em>Keywords: </em></strong><em>Gajah Mungkur Reservoir, </em><em>L</em><em>andsat 8 OLI satellite imagery, regression, TSI, trophic state</em></p>


1995 ◽  
Vol 30 (4) ◽  
pp. 565-592 ◽  
Author(s):  
A.F. Gemza

Abstract Severn Sound continues to exhibit signs of eutrophication despite initial identification of the problem in 1969 and the construction of several sewage treatment plants since then. In general, improvements in trophic state indicators have been marginal, suggesting that the sewage treatment plants have had limited success in controlling phosphorus concentrations. These discharges likely contributed to the increased total phosphorus levels and consequently the higher phytoplankton densities of the nearshore waters. Phytoplankton biovolumes were on average one order of magnitude higher than in the open waters of Lake Huron with mean summer biovolumes as high as 8.0 mm/L. Algal biovolumes were most dense in Penetang Bay, which experienced limited exchange with the main waters of the sound. No significant long-term trends were observed. Water clarity was declining significantly, however, at a rate of -0.60 to -0.78 m/year throughout the sound except in Sturgeon Bay. Total phosphorus levels were highly variable from year to year; however, concentrations from a 20-year perspective were declining in the open waters at a rate of 0.70 µg/L/year, but response was limited in nearshore areas. In Sturgeon Bay, mean annual euphotic zone total phosphorus as well as soluble reactive phosphorus levels declined by as much as 50% following the construction of a sewage treatment plant with tertiary treatment. Phytoplankton genera typical of eutrophic waters continued to dominate the algal assemblage but members indicative of mesotrophic conditions have become apparent in some areas of the sound.


1979 ◽  
Vol 14 (1) ◽  
pp. 71-88
Author(s):  
S.E. Penttinen ◽  
P.H. Bouthillier ◽  
S.E. Hrudey

Abstract Studies on the chronic low dissolved oxygen problems encountered under winter ice in the Red Deer River have generally been unable to account for dissolved oxygen depletion in terms of known manmade inputs. An experimental program was developed to assess the possible nature and approximate bounds of oxygen demand due to natural organic runoff carried to the Red Deer River by a small tributary stream, the Blindman River. The study employed an electrolytic respirometer on stream water samples subjected to prior concentration by vacuum evaporation. Evaluation of carbon and nitrogen budgets in conjunction with the measured oxygen demand indicate that biochemical oxygen demand is originating with natural organic runoff in tributaries of the Red Deer River. The results provide a basis for estimation of the possible contribution to the observed oxygen demand in the Red Deer River originating from natural organic runoff.


Our Nature ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 48-54
Author(s):  
Ram Bhajan Mandal ◽  
Sunila Rai ◽  
Madhav Kumar Shrestha ◽  
Dilip Kumar Jha ◽  
Narayan Prasad Pandit

An experiment was carried to assess the effect of red algal bloom on growth and production of carp, water quality and profit from carp for 120 days at Aquaculture Farm of Agriculture and Forestry University, Chitwan. The experiment included two treatments: carp polyculture in non-red pond and carp polyculture in red pond with algal bloom each with three replicates. Carp fingerlings were stocked at 1 fish/m2 and fed with pellet containing 24% CP at 3% body weight. Net yield of rohu was found significantly higher (p<0.05) in non-red ponds (0.38±0.01 t ha-1) than red ponds (0.24±0.05 t ha-1). Survival of rohu (84.9±1.4%), bighead (95.2±2.0%) and mrigal (88.1±14.4%) were also significantly higher (p<0.05) in non-red ponds than red ponds. Red algal bloom affected DO, nitrate and chlorophyll-a, nitrite, total nitrogen, total phosphorus, total dissolved solids and conductivity. However, overall carp production and profit from carp remained unaffected.


1989 ◽  
Vol 16 (3) ◽  
pp. 308-316 ◽  
Author(s):  
C. A. Town ◽  
D. S. Mavinic ◽  
B. Moore

Urban encroachment and intensive agricultural activity within the Serpentine–Nicomekl watershed (near Vancouver, B.C.) have caused a series of fish (salmon) kills on the Serpentine River since 1980. Low dissolved oxygen was responsible for these kills. This field project investigated some of the dynamic chemical and biological relationships within the river, as well as the use of an instream aerator as a temporary, in situ, water quality improvement measure. Weekly sampling for a 6-month period during the latter half of 1985 established a solid data base for deriving and interpreting meaningful interrelationships. A strong correlation between chlorophyll a and dissolved oxygen levels before the algae die-off supported the hypothesis that algae blooms dying in the fall could create a serious oxygen demand. Because of these environmental conditions, the river is unable to sustain healthy dissolved oxygen levels during this period. As such, a prototype, 460 m artificial aeration line was designed, installed, and monitored to evaluate its potential for alleviating low dissolved oxygen conditions and improving overall water quality during the critical fall period.The instream aerator ran continuously for over 2 months, starting in September 1985. Despite better-than-expected weather conditions (i.e., cool, wet weather) and relatively high dissolved oxygen levels during the fall of 1985, the data base appeared to support the use of this prototype aeration unit as a means of "upgrading" a stretch of an urban river subject to periodic, low dissolved oxygen levels. As a result, a 2-year follow-up study and river monitoring was initiated. In both 1986 and 1987, late summer and early fall river conditions resulted in the potential for serious salmon kills, due to higher-than-normal river temperatures and very low dissolved oxygen. In both instances, the instream aerator prevented such fish kills in a key stretch of the river. Expansion of the system to include other critical stretches of the Serpentine and other urban river systems, near Vancouver, is being considered. Key words: algae, aerator, chlorophyll a, eutrophic, fish kills, instream aeration, river improvement, urban river.


2015 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
S.-J. Kao ◽  
B.-Y. Wang ◽  
L.-W. Zheng ◽  
K. Selvaraj ◽  
S.-C. Hsu ◽  
...  

Abstract. Available reports of dissolved oxygen, δ15N of nitrate (δ 15NNO3) and δ15N of total nitrogen (δ15Nbulk) for trap material and surface/downcore sediments from the Arabian Sea (AS) were synthesized to explore the AS' past nitrogen dynamics. Based on 25 μmol kg−1 dissolved oxygen isopleth at a depth of 150 m, we classified all reported data into northern and southern groups. By using δ15Nbulk of the sediments, we obtained geographically distinctive bottom-depth effects for the northern and southern AS at different climate stages. After eliminating the bias caused by bottom depth, the modern-day sedimentary δ15Nbulk values largely reflect the δ15NNO3 supply from the bottom of the euphotic zone. Additionally to the data set, nitrogen and carbon contents vs. their isotopic compositions of a sediment core (SK177/11) collected from the most southeastern part of the AS were measured for comparison. We found a one-step increase in δ15Nbulk starting at the deglaciation with a corresponding decrease in δ13CTOC similar to reports elsewhere revealing a global coherence. By synthesizing and reanalyzing all reported down core δ15Nbulk, we derived bottom-depth correction factors at different climate stages, respectively, for the northern and southern AS. The diffusive sedimentary δ15Nbulk values in compiled cores became confined after bias correction revealing a more consistent pattern except recent 6 ka. Such high similarity to the global temporal pattern indicates that the nitrogen cycle in the entire AS had responded to open-ocean changes until 6 ka BP. Since 6 ka BP, further enhanced denitrification (i.e., increase in δ15Nbulk) in the northern AS had occurred and was likely driven by monsoon, while, in the southern AS, we observed a synchronous reduction in δ15Nbulk, implying that nitrogen fixation was promoted correspondingly as the intensification of local denitrification at the northern AS basin.


Sign in / Sign up

Export Citation Format

Share Document