Influence of Temperature and Current Speed on the Swimming Capacity of Lake Whitefish (Coregonus clupeaformis) and Cisco (C. artedii)

1985 ◽  
Vol 42 (9) ◽  
pp. 1522-1529 ◽  
Author(s):  
Louis Bernatchez ◽  
Julian J. Dodson

We tested the influence of temperature and water velocity on metabolic rate and swimming performance of lake whitefish (Coregonus clupeaformis) and Cisco (C. artedii) using respirometry techniques. Tests were conducted at 5, 12, and 17 °C (speed range 20–102 cm∙s−1) for fake whitefish and at 12 °C (speed range 20–63 cm∙s−1) for cisco. Fish lengths ranged from 10 to 39 cm (TL). The net aerobic cost of swimming, obtained by subtracting standard from total oxygen consumption, was twice as high for cisco as that for lake whitefish at any swimming speed. However, the standard metabolic rate of lake whitefish was almost the double that of cisco acclimated to the same temperature. Values of metabolic scope for activity coupled with the net cost of swimming showed that coregonines were not good performers compared with most salmonids. The active metabolic rate, scope for activity, and critical swimming speed for lake whitefish were maximal at 12 °C and minimal at 5 °C. Swimming endurance of lake whitefish decreased logarithmically with swimming speed and was reduced at low temperature, the distance traversed at any given swimming speed being minimal at 5 °C. Our results support the hypothesis that the combined effect of high water velocities and low ambient temperature on coregonines' metabolism and swimming performance may be a more important factor than specific spawning temperature in the timing of the early reproductive migration of anadromous coregonines in the Eastmain River, James Bay.

2001 ◽  
Vol 58 (6) ◽  
pp. 1104-1112 ◽  
Author(s):  
D J McKenzie ◽  
E Cataldi ◽  
P Romano ◽  
S F Owen ◽  
E W Taylor ◽  
...  

Specific growth rates, exercise respirometry, and swimming performance were compared in young-of-the-year Adriatic sturgeon (Acipenser naccarii) maintained in freshwater (FW) or acclimated to brackish water (BW) that was slightly hypertonic to sturgeon plasma, at a salinity of 11 g·L–1. Specific growth rate was significantly (17%) lower in BW than in FW. Sturgeon in BW also had a significantly (30%) higher standard metabolic rate than those in FW. In both groups, the relationship between swimming speed and oxygen uptake was described equally well by a linear or exponential equation, with a power relationship between swimming speed and net cost of locomotion and a linear relationship between tailbeat frequency and swimming speed. However, sturgeon in BW exhibited higher mean total oxygen uptake, net costs, and tailbeat frequencies than the FW group at any given swimming speed. There were, however, no differences in aerobic scope or maximum sustainable swimming speed between the FW and BW groups because the BW group exhibited a compensatory increase in active metabolic rate and maximum tailbeat frequency. The results indicate that FW is a more suitable environment than mildly hypertonic BW for young-of-the-year Adriatic sturgeon.


2014 ◽  
Vol 71 (2) ◽  
pp. 217-225 ◽  
Author(s):  
Koji Miyoshi ◽  
Kazufumi Hayashida ◽  
Taku Sakashita ◽  
Makoto Fujii ◽  
Hisaya Nii ◽  
...  

The spawning ground of chum salmon (Oncorhynchus keta) is usually located farther downriver than that of masu salmon (Oncorhynchus masou) in Hokkaido, Japan. To compare the swimming abilities of these two species, the relationship between swimming speed and oxygen consumption was compared using a swim tunnel in the laboratory. Then, the upstream-migration behaviors of chum salmon and masu salmon were compared using electromyogram telemetry at fish passages in the Toyohira River, Hokkaido. In the laboratory study, the standard metabolic rate of masu salmon was lower and the critical swimming speed (Ucrit) was faster than those of chum salmon. In the field study, the holding time needed to recover the swimming performance exceeding Ucrit at the fish passages and the trial number needed to pass the fish passages were significantly lower for masu salmon than chum salmon. These results revealed that masu salmon are more adaptable to extended swimming in high water velocity conditions than chum salmon and that masu salmon are better equipped for a long distance upstream migration to their spawning ground than chum salmon.


2002 ◽  
Vol 205 (6) ◽  
pp. 791-798 ◽  
Author(s):  
Frances D. Duncan ◽  
Boris Krasnov ◽  
Megan McMaster

SUMMARY This study correlates the pattern of external gas exchange with the diel activity of nine species of tenebrionid beetle from the Negev Desert, Israel. The study species are active throughout the summer months when daytime temperatures are high and no rain falls. There were no differences in standard metabolic rate, determined by flow-through respirometry, among the nine species. All the nocturnally active beetles exhibited a form of continuous respiration, whereas the two diurnally active and one crepuscular species exhibited a cyclic form of respiration referred to as the discontinuous gas-exchange cycle (DGC). The DGCs recorded have a long flutter period consisting of miniature ventilations, and 29–48 % of the total CO2 output occurred during this period. In this study, the flutter period played an important role in the modulation of metabolic rate, in contrast to other studies in which the burst period has been shown to be important. We suggest that the long flutter period is important in reducing respiratory water loss in arid-dwelling arthropods. This study lends support to the hypothesis that discontinuous gas exchange is important in reducing respiratory water loss from beetles that need to minimise dessication because of the high water vapour pressure gradient they experience. If the use of underground burrows were responsible for the evolution of discontinuous gas exchange, then we would expect all nine tenebrionid species to use DGCs since both the nocturnally and diurnally active species bury in the sand during periods of inactivity. We conclude that the activity patterns of the beetles are more important than their habitat associations in designating the type of respiration used.


2001 ◽  
Vol 204 (15) ◽  
pp. 2691-2698 ◽  
Author(s):  
A. Shingles ◽  
D. J. McKenzie ◽  
E. W. Taylor ◽  
A. Moretti ◽  
P. J. Butler ◽  
...  

SUMMARYAdult trout Oncorhynchus mykiss fitted with a dorsal aortic catheter were exposed to 288±15μmoll−1 (mean ± s.e.m.) total ammonia for 24h in water at a pH of 8.39±0.02, while swimming at a speed equivalent to 0.75bodylengthss−1 (BLs−1) in a Brett-type tunnel respirometer. The fish were then exposed to stepwise increments in swimming speed (0.25BLs−1 every 30min) until exhaustion. Measurements of oxygen uptake (MO2) and plasma total ammonia levels and pH were made at each speed. Control trout were treated identically but without exposure to ammonia. Ammonia exposure caused an increase in plasma total ammonia level to 436±34μmoll−1, compared to 183±30μmoll−1in control animals (N=6). A significant reduction in total plasma ammonia level was found in both groups during exercise, despite a large negative concentration gradient in those exposed to an elevated concentration of ammonia in water, which may indicate an active excretory process. The overall increase in plasma ammonia levels in exposed trout was associated with a significant reduction in critical swimming speed (Ucrit) to 1.61±0.17BLs−1 from 2.23±0.15BLs−1 in control animals. Ammonia-exposed trout had a significantly higher maintenance metabolic rate (MMR) than control fish, when estimated as the y-intercept of the relationship between swimming speed and MO2. Active metabolic rate (AMR, maximum MO2 as measured at Ucrit) was significantly lower in ammonia-exposed animals, leading to a profound reduction in factorial aerobic scope (AMR/MMR). Reduced Ucrit was also linked to a reduction in maximum tailbeat frequency. Calculation of membrane potentials (EM) in the white muscle of fish swum to Ucrit revealed a significant partial depolarisation of white muscle in ammonia-exposed fish. This may have prevented white muscle recruitment and contributed to the reduced maximum tailbeat frequency and overall impairment of swimming performance in the ammonia-exposed fish.


1970 ◽  
Vol 27 (7) ◽  
pp. 1209-1214 ◽  
Author(s):  
F. W. H. Beamish

When Tilapia nilotica was acclimated to temperatures of 15–35 C and salinities of 0–30‰ in a vertical gradient tank, maximum temperature preferenda occurred at acclimation temperatures of 20 and 25 irrespective of salinity. Preferenda declined as acclimation temperature was increased above 25 C and, except at 0 and 7.5‰, declined as acclimation temperature was decreased below 20 C. The pattern of the relation between final temperature preferenda and salinity was similar to that reported between oxygen consumption for a given sustained swimming speed and salinity. The final preferendum was lowest at 15‰, close to the isosmotic salinity of T. nilotica, and highest at the extremes, 0 and 30‰. Final temperature preferenda are in general agreement with optimum temperatures reported for growth, reproduction, and swimming performance.


Sign in / Sign up

Export Citation Format

Share Document