Effects of Low Concentrations of Cadmium on the Crustacean Zooplankton Community of an Artificially Acidified Lake

1987 ◽  
Vol 44 (S1) ◽  
pp. s163-s172 ◽  
Author(s):  
S. G. Lawrence ◽  
M. H. Holoka

The toxic effects of cadmium to total community and individual species of zooplankton generally decreased as pH of the lake was experimentally lowered over a number of years by additions of acids. The biomass of crustacean zooplankton held in small impoundment systems suspended in the lake for fourteen days was reduced by 60–70% when pH was 6.7–6.8 and concentrations of Cd were maintained at 1 μg∙L−1, and by 70–80% when Cd was at 3 μg∙L−1. At a pH of 5.9, however, biomass was reduced only 20–30% in concentrations of Cd of 1 μg∙L−1, and at pH 5.6, biomass decreased by only 20% when subjected to 3 μg∙L−1 Cd. The cladocerans Bosmina longirostris and Holopedium gibberum were the most sensitive to cadmium. Cladocerans were more sensitive to cadmium than calanoid copepods, and both these groups were more sensitive then cyclopoid copepods. The decrease in toxicity of cadmium with increasing H+ may be analogous to the inhibition of uptake of cadmium by calcium.


Diversity ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 21 ◽  
Author(s):  
Julie E. Keister ◽  
Amanda K. Winans ◽  
BethElLee Herrmann

Several hypotheses of how zooplankton communities respond to coastal hypoxia have been put forward in the literature over the past few decades. We explored three of those that are focused on how zooplankton composition or biomass is affected by seasonal hypoxia using data collected over two summers in Hood Canal, a seasonally-hypoxic sub-basin of Puget Sound, Washington. We conducted hydrographic profiles and zooplankton net tows at four stations, from a region in the south that annually experiences moderate hypoxia to a region in the north where oxygen remains above hypoxic levels. The specific hypotheses tested were that low oxygen leads to: (1) increased dominance of gelatinous relative to crustacean zooplankton, (2) increased dominance of cyclopoid copepods relative to calanoid copepods, and (3) overall decreased zooplankton abundance and biomass at hypoxic sites compared to where oxygen levels are high. Additionally, we examined whether the temporal stability of community structure was decreased by hypoxia. We found evidence of a shift toward more gelatinous zooplankton and lower total zooplankton abundance and biomass at hypoxic sites, but no clear increase in the dominance of cyclopoid relative to calanoid copepods. We also found the lowest variance in community structure at the most hypoxic site, in contrast to our prediction. Hypoxia can fundamentally alter marine ecosystems, but the impacts differ among systems.



2009 ◽  
Vol 66 (5) ◽  
pp. 816-828 ◽  
Author(s):  
Richard P. Barbiero ◽  
Mary Balcer ◽  
David C. Rockwell ◽  
Marc L. Tuchman

Cladoceran populations in the open waters of Lake Huron declined abruptly in 2003 and have since remained at historically low levels. The two dominant cladocerans, Daphnia mendotae and Bosmina longirostris , have been nearly extirpated from the northern region of the lake and are present in only slightly greater numbers in the south. Average nonpredatory cladoceran biomass in the lake has declined over 90% between 1998–2002 and 2003–2006. In addition, historically unprecedented declines in cyclopoid copepods were seen in the lake in 2005. These changes have occurred against the backdrop of declining nutrient levels in the lake and have coincided closely with declines in the amphipod Diporeia . We speculate that a combination of reduced primary production in the open waters and intensified planktivory due to the continuing disappearance of Diporeia has accounted for the losses in crustacean biomass seen in recent years.



Crustaceana ◽  
2017 ◽  
Vol 90 (14) ◽  
pp. 1793-1802
Author(s):  
Patricio R. De los Ríos Escalante ◽  
Fatima Kies

The Patagonian lakes (38-55°S) are characterized by their marked oligotrophy, low number of species of crustacean zooplankton, and a marked predominance of calanoid copepods. Within this context, we considered that a review about the ecology of the zooplankton in central and southern Chilean lakes would be useful, aiming to understand the ecological importance of this group. Data obtained from the literature for freshwater bodies in central and southern Chilean lakes were analysed. In addition, data from various bays with widely differing trophic status in Llanquihue Lake were examined. The results revealed the existence of originally pristine and oligotrophic sites, all with a low number of species and marked calanoid dominance. However, in northern Patagonia there are many lakes in which human intervention has caused an increase in phytoplankton activity, with a consequent replacement of calanoid copepods by daphniid cladocerans. Other important factors that could affect the zooplankton community would be fish predation, which is due to generate a decrease in large-bodied groups of zooplankton; and stress due to exposure to natural ultraviolet radiation. Ecological, biogeographical, and evolutionary topics are discussed within the framework described.



2004 ◽  
Vol 61 (11) ◽  
pp. 2111-2125 ◽  
Author(s):  
Richard P Barbiero ◽  
Marc L Tuchman

The crustacean zooplankton communities in Lakes Michigan and Huron and the central and eastern basins of Lake Erie have shown substantial, persistent changes since the invasion of the predatory cladoceran Bythotrephes in the mid-1980s. A number of cladoceran species have declined dramatically since the invasion, including Eubosmina coregoni, Holopedium gibberum, Daphnia retrocurva, Daphnia pulicaria, and Leptodora kindti, and overall species richness has decreased as a result. Copepods have been relatively unaffected, with the notable exception of Meso cyclops edax, which has virtually disappeared from the lakes. These species shifts have for the most part been consistent and equally pronounced across all three lakes. Responses of crustacean species to the Bythotrephes invasion do not appear to be solely a consequence of size, and it is likely that other factors, e.g., morphology, vertical distribution, or escape responses, are important determinants of vulnerability to predation. Our results indicate that invertebrate predators in general, and invasive ones in particular, can have pronounced, lasting effects on zooplankton community structure.



Hydrobiologia ◽  
2009 ◽  
Vol 632 (1) ◽  
pp. 225-233 ◽  
Author(s):  
S. Matthew Drenner ◽  
Stanley I. Dodson ◽  
Ray W. Drenner ◽  
John E. Pinder III


1980 ◽  
Vol 37 (3) ◽  
pp. 403-414 ◽  
Author(s):  
J. S. Marshall ◽  
D. L. Mellinger

Structural and functional responses of plankton communities to cadmium stress were studied during 1977 in Lake Michigan using small-volume (8 L) completely sealed enclosures, and in Canada's Experimental Lakes Area (ELA) Lake 223 using large-volume (1.5 × 105 L) open-surface enclosures. In Lake Michigan, reductions of the average abundance of micro-crustaceans by cadmium were significantly greater in "light" or shallow epilimnetic incubations than they were in "dark" or deep epilimnetic incubations. Measurements of dissolved oxygen indicated that this interaction with light (depth) was an indirect effect due to a reduction of photosynthesis and primary production. Zooplankton density and species diversity were not significantly affected within 21 d by cadmium concentrations [Formula: see text] and [Formula: see text] Cd/L, respectively, whereas final dissolved oxygen concentration and percentage similarity (PS) of the crustacean zooplankton community were significantly reduced by [Formula: see text] Cd/L. In the ELA Lake 223 experiment, the reducing effect of cadmium on zooplankton density increased up to 31 d after Cd enrichment and then decreased, probably due to decreasing Cd concentrations in the water. Values of PS on day 24 for the ELA enclosures enriched with 1 and 3 μg Cd/L were within the 95% confidence limits for individual values predicted from a regression of PS on cadmium for the 21-d Lake Michigan experiments.Key words: plankton communities, zooplankton, phytoplankton, cadmium stress, Lake Michigan, Canadian Shield lakes



2019 ◽  
Vol 76 (12) ◽  
pp. 2268-2287
Author(s):  
Lauren Emily Barth ◽  
Brian John Shuter ◽  
William Gary Sprules ◽  
Charles Kenneth Minns ◽  
James Anthony Rusak

Developing the crustacean zooplankton community size spectrum into an indicator of change in lakes requires quantification of the natural variability in the size spectrum related to broad-scale seasonal, annual, and spatial factors. Characterizing seasonal patterns of variation in the size spectrum is necessary so that monitoring programs can be designed to minimize the masking effects that seasonal processes can have on detecting longer-term temporal change. We used a random effects model to measure monthly, annual, and interlake variability in the slope (i.e., relative abundance of small and large organisms) and centered height (i.e., total abundance) of the crustacean zooplankton normalized abundance size spectrum from 1981 to 2011 among eight Canadian Shield lakes. Consistent with theoretical predictions, the slope was a relatively stable characteristic of the zooplankton community compared with the height, which varied significantly among lakes. We identified a seasonal signal in height and slope and used a mixed effects model to characterize the linear rate of change from May to October; there was an overall decline in height and an overall increase in slope. Seasonal variance was greater than annual variance for both the height and the slope, suggesting that long-term monitoring of lakes and interlake comparisons using zooplankton size spectra should be based on temporally standardized sampling protocols that minimize the effects of seasonal processes. We recommend sampling the zooplankton community in midsummer because this results in size spectrum estimates close to seasonal mean values.



Crustaceana ◽  
2019 ◽  
Vol 92 (8) ◽  
pp. 897-905
Author(s):  
Patricio De los Ríos ◽  
Jorge Farias-Avendaño ◽  
Maria J. Suazo

Abstract The crustacean zooplankton in Chilean Patagonian lakes is characterized by a marked dominance of calanoid copepods when under an oligotrophic status. The aim of the present study was to analyse the number of eggs and the relation of that feature with the total length of females of calanoid and cyclopoid copepods reported in three northern Chilean Patagonian lakes. The calanoid copepods found were Boeckella gracilipes in Lake Pellaifa and Tumeodiaptomus diabolicus in the lakes Panguipulli and Calafquén, whereas the cyclopoid Mesocyclops araucanus was found in the lakes Pellaifa and Calafquén. For calanoid copepods, high egg numbers were found and thus also a high value for the ratio of egg number per female length in Lake Panguipulli, whereas for M. araucanus a high value was found in Lake Pellaifa. These differences would presumably be associated with community structure, specifically predator-prey relationships and possibly other interactions, as, e.g., potential interspecific competition.



1968 ◽  
Vol 16 (3) ◽  
pp. 579 ◽  
Author(s):  
R Jones

The leaf area of an Australian heathland was determined on harvested material for a series of monthly harvests over 2 years. The leaf area index (LAI) varied from 1 .8 to 3.2. Seasonal growth flushes accounted for the high values, while leaf fall induced by water stress restored the equilibrium to approximately 2.0. The dominant shrub, Leptospermum myrsinoides, contributed 53.5% of the total leaf area, and this species alone caused the seasonal fluctuations in community area. Only three other species contributed more than 5 % to the total. Community growth was characterized by the behaviour of L. myrsinoides. Detailed analyses of this species showed the need for seasonal measurements to fully describe the LAI of evergreen communities.



2017 ◽  
Vol 6 (1) ◽  
pp. 8
Author(s):  
Ana Paula Justiniano Régo ◽  
Ederio Dino Bidoia ◽  
Cassiana Maria Reganhan-Coneglian

The ametryne herbicide is largely used on sugar cane plantation in Brazil. It is persistent in the environment and can be found in bodies of water, impacting the aquatic and terrestrial ecosystems. Generally, in crops are applied mixtures of herbicides in order to obtain a higher success in combating weeds. This study evaluated the toxicity only of ametryne herbicide, without mixture with other herbicides, in order to quantify only the degree of dangerousness. This work evaluated the toxicity of ametryne to one aquatic test organism (Daphnia similis) and two land test organism (Eruca sativa and Lactuca sativa). Immobility of D. similis was evaluated in the presence of ametryne. Influences of ametryne on seed germination and root growth of E. sativa and L. sativa were evaluated. Even at low concentrations (5.00 mg/L), ametryne caused toxic effects on the mobility of D. similis, and 0.25 g/L caused toxic effects on the seeds. Root growth and the percentage of inhibition showed greater sensitivity to ametryne compared with seed germination. Thus, ametryne resulted in toxic effects to the analyzed organisms, which may bring damage to both aquatic and terrestrial ecosystems.



Sign in / Sign up

Export Citation Format

Share Document