Factors Affecting Alkalinity Concentrations of Streamwater during Snowmelt in Central Ontario

1989 ◽  
Vol 46 (10) ◽  
pp. 1658-1666 ◽  
Author(s):  
Lewis A. Molot ◽  
P. J. Dillon ◽  
B. D. LaZerte

Relative contributions of changes in base cations and acid anions to alkalinity decreases during spring snowmelt in 1984–86 were analyzed for 15 headwater streams and lake outflows in three central Ontario catchments. During episodes, concentration changes in ions which contributed to alkalinity decreases were partially offset by smaller changes in other ions which contributed to alkalinity increases. The major contributor to alkalinity depressions was base cation dilution by snowmelt water. Akalinity depressions were more likely to be dominated by SO42− increases in streams that were more acidic. Neither nitrate nor organic acid anions were significant contributors to alkalinity depressions. Discharge was highly correlated with alkalinity in a circumneutral stream but not in an acidic stream and is consistent with dilution being less important as a cause of alkalinity depressions as streams become more acidic.


1992 ◽  
Vol 23 (1) ◽  
pp. 13-26 ◽  
Author(s):  
W. H. Hendershot ◽  
L. Mendes ◽  
H. Lalande ◽  
F. Courchesne ◽  
S. Savoie

In order to determine how water flowpath controls stream chemistry, we studied both soil and stream water during spring snowmelt, 1985. Soil solution concentrations of base cations were relatively constant over time indicating that cation exchange was controlling cation concentrations. Similarly SO4 adsorption-desorption or precipitation-dissolution reactions with the matrix were controlling its concentrations. On the other hand, NO3 appeared to be controlled by uptake by plants or microorganisms or by denitrification since their concentrations in the soil fell abruptly as snowmelt proceeded. Dissolved Al and pH varied vertically in the soil profile and their pattern in the stream indicated clearly the importance of water flowpath on stream chemistry. Although Al increased as pH decreased, the relationship does not appear to be controlled by gibbsite. The best fit of calculated dissolved inorganic Al was obtained using AlOHSO4 with a solubility less than that of pure crystalline jurbanite.



2020 ◽  
Vol 17 (2) ◽  
pp. 281-304 ◽  
Author(s):  
Sophie Casetou-Gustafson ◽  
Harald Grip ◽  
Stephen Hillier ◽  
Sune Linder ◽  
Bengt A. Olsson ◽  
...  

Abstract. Reliable and accurate methods for estimating soil mineral weathering rates are required tools in evaluating the sustainability of increased harvesting of forest biomass and assessments of critical loads of acidity. A variety of methods that differ in concept, temporal and spatial scale, and data requirements are available for measuring weathering rates. In this study, causes of discrepancies in weathering rates between methods were analysed and were classified as being either conceptual (inevitable) or random. The release rates of base cations (BCs; Ca, Mg, K, Na) by weathering were estimated in podzolised glacial tills at two experimental forest sites, Asa and Flakaliden, in southern and northern Sweden, respectively. Three different methods were used: (i) historical weathering since deglaciation estimated by the depletion method, using Zr as the assumed inert reference; (ii) steady-state weathering rate estimated with the PROFILE model, based on quantitative analysis of soil mineralogy; and (iii) BC budget at stand scale, using measured deposition, leaching and changes in base cation stocks in biomass and soil over a period of 12 years. In the 0–50 cm soil horizon historical weathering of BCs was 10.6 and 34.1 mmolc m−2 yr−1, at Asa and Flakaliden, respectively. Corresponding values of PROFILE weathering rates were 37.1 and 42.7 mmolc m−2 yr−1. The PROFILE results indicated that steady-state weathering rate increased with soil depth as a function of exposed mineral surface area, reaching a maximum rate at 80 cm (Asa) and 60 cm (Flakaliden). In contrast, the depletion method indicated that the largest postglacial losses were in upper soil horizons, particularly at Flakaliden. With the exception of Mg and Ca in shallow soil horizons, PROFILE produced higher weathering rates than the depletion method, particularly of K and Na in deeper soil horizons. The lower weathering rates of the depletion method were partly explained by natural and anthropogenic variability in Zr gradients. The base cation budget approach produced significantly higher weathering rates of BCs, 134.6 mmolc m−2 yr−1 at Asa and 73.2 mmolc m−2 yr−1 at Flakaliden, due to high rates estimated for the nutrient elements Ca, Mg and K, whereas weathering rates were lower and similar to those for the depletion method (6.6 and 2.2 mmolc m−2 yr−1 at Asa and Flakaliden). The large discrepancy in weathering rates for Ca, Mg and K between the base cation budget approach and the other methods suggests additional sources for tree uptake in the soil not captured by measurements.



2013 ◽  
Vol 10 (6) ◽  
pp. 3849-3868 ◽  
Author(s):  
J. L. J. Ledesma ◽  
T. Grabs ◽  
M. N. Futter ◽  
K. H. Bishop ◽  
H. Laudon ◽  
...  

Abstract. Riparian zones (RZ) are a major factor controlling water chemistry in forest streams. Base cations' (BC) concentrations, fluxes, and cycling in the RZ merit attention because a changing climate and increased forest harvesting could have negative consequences, including re-acidification, for boreal surface waters. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 RZ and 14 streams in different landscape elements of a boreal catchment in northern Sweden. The spatial variation in BC and Si dynamics in both RZ and streams was explained by differences in landscape element type, with highest concentrations in silty sediments and lowest concentrations in peat-dominated wetland areas. Temporal stability in BC and Si concentrations in riparian soil water, remarkably stable Mg/Ca ratios, and homogeneous mineralogy suggest that patterns found in the RZ are a result of a distinct mineralogical upslope signal in groundwater. Stream water Mg/Ca ratios indicate that the signal is subsequently maintained in the streams. Flow-weighted concentrations of Ca, Mg, and Na in headwater streams were represented by the corresponding concentrations in the RZ, which were estimated using the Riparian Flow-Concentration Integration Model (RIM) approach. Stream and RZ flow-weighted concentrations differed for K and Si, suggesting a stronger biogeochemical influence on these elements, including K recirculation by vegetation and retention of Si within the RZ. Potential increases in groundwater levels linked to forest harvesting or changes in precipitation regimes would tend to reduce BC concentrations from RZ to streams, potentially leading to episodic acidification.



2017 ◽  
Author(s):  
Ruzhen Wang ◽  
Xue Wang ◽  
Yong Jiang ◽  
Artemi Cerdà ◽  
Jinfei Yin ◽  
...  

Abstract. To understand whether base cations and micronutrients in the plant-soil system change with elevation, we investigated the patterns of base cations and micronutrients in both soils and plant tissues along three elevational gradients and three different climate zones in China. Base cations of Ca, Mg and K and micronutrients of Fe, Mn and Zn were determined in soils, trees and shrubs growing at lower and middle elevations as well as at their upper limits on Balang (subtropical, SW China), Qilian (dry-temperate, NW China) and Changbai (wet-temperate, NE China) mountains. No consistent elevational patterns were found for base cation and micronutrient concentrations in both soils and plant tissues (leaves, roots, shoots and stem sapwood). Rather, soil pH, total soil nitrogen (TN), the soil organic carbon (SOC) to TN ratio (C:N), and total soil inorganic nitrogen (TIN) determined the elevational patterns of soil exchangeable Ca and Mg. Furthermore, multiple regression models showed that soil pH and C:N were pivotal factors affecting soil Fe, Mn and Zn availabilities. In return, soil base cation and micronutrient availabilities played fundamental roles in determining the base cation and micronutrient concentrations in plant tissues. Our results highlight the importance of soil physicochemical properties (mainly SOC, C:N and pH) rather than elevation (i.e., canopy cover and environmental factors, especially temperature), in determining base cation and micronutrient availabilities in soils and subsequently their concentrations in plant tissues.



1992 ◽  
Vol 22 (2) ◽  
pp. 167-174 ◽  
Author(s):  
N.W. Foster ◽  
M.J. Mitchell ◽  
I.K. Morrison ◽  
J.P. Shepard

Annual nutrient fluxes within two forests exposed to acidic deposition were compared for a 1-year period. Calcium (Ca2+) was the dominant cation in throughfall and soil solutions from tolerant hardwood dominated Spodosols (Podzols) at both Huntington Forest (HF), New York, and the Turkey Lakes watershed (TLW), Ontario. There was a net annual export of Ca2+ and Mg2+ from the TLW soil, whereas base cation inputs in precipitation equaled outputs at HF. In 1986, leaching losses of base cations were five times greater at TLW than at HF. A higher percentage of the base cation reserves was leached from the soil at TLW (5%) than at HF (1%). Relative to throughfall, aluminum concentrations increased in forest-floor and mineral-soil solutions, especially at HF. The TLW soil appears more sensitive to soil acidification. Deposited atmospheric acidity, however, was small in comparison with native soil acidity (total and exchangeable) and the reserves of base cations in each soil. Soil acidity and base saturation, therefore, are likely only to change slowly.



2006 ◽  
Vol 52 (Special Issue) ◽  
pp. S3-S13 ◽  
Author(s):  
M.E. Fenn ◽  
T.G. Huntington ◽  
S.B. McLaughlin ◽  
C. Eagar ◽  
A. Gomez ◽  
...  

Forest soil acidification and depletion of nutrient cations have been reported for several forested regions in North America, predominantly in the eastern United States, including the northeast and in the central Appalachians, but also in parts of southeastern Canada and the southern U.S. Continuing regional inputs of nitrogen and sulfur are of concern because of leaching of base cations, increased availability of soil Al, and the accumulation and ultimate transmission of acidity from forest soils to streams. Losses of calcium from forest soils and forested watersheds have now been documented as a sensitive early indicator and a functionally significant response to acid deposition for a wide range of forest soils in North America. For red spruce, a clear link has been established between acidic deposition, alterations in calcium and aluminum supplies and increased sensitivity to winter injury. Cation depletion appears to contribute to sugar maple decline on some soils, specifically the high mortality rates observed in northern Pennsylvania over the last decade. While responses to liming have not been systematically examined in North America, in a study in Pennsylvania, restoring basic cations through liming increased basal area growth of sugar maple and levels of calcium and magnesium in soil and foliage. In the San Bernardino Mountains in southern California near the west coast, the pH of the A horizon has declined by at least 2 pH units (to pH 4.0–4.3) over the past 30 years, with no detrimental effects on bole growth; presumably, because of the Mediterranean climate, base cation pools are still high and not limiting for plant growth.



1994 ◽  
Vol 24 (3) ◽  
pp. 542-549 ◽  
Author(s):  
J.W. Fyles ◽  
B. Côté ◽  
F. Courchesne ◽  
W.H. Hendershot ◽  
S. Savoie

Application of base cation fertilizers is widely used to ameliorate decline symptoms in hardwood forests in southern Quebec, but little is known about the effects of fertilization on nutrient cycling. Control and fertilized plots in a sugar maple (Acersaccharum Marsh.) dominated stand were monitored over a 4-year period to determine the effects of fertilization on exchangeable soil base cations in soil, foliar nutrient concentrations, and fluxes of N, K, Ca, and Mg in litter fall and throughfall. Fertilization had a large, immediate effect on exchangeable K, whereas effects on Ca and Mg were delayed and restricted to the organic forest floor, presumably because of the lower solubility of the limestone-based Ca and Mg components of the fertilizer. Fertilization raised pH in the organic forest floor the second and third years after application but had no effect in the B horizon. Foliar K, Ca, and Mg were elevated in the year of fertilization, but foliar concentrations of Ca and Mg did not differ from, or were lower than, controls in following years. Litter-fall K flux was increased by fertilization, but litter-fall Ca and Mg fluxes and all through-fall base cation fluxes were unaffected. In control plots, nutrient concentrations in soil remained relatively constant throughout the study, but foliar concentrations and, in particular, litter-fall fluxes varied widely from year to year. This natural variation caused control plots to shift from a state of deficiency in N, Ca, and Mg to a nutrient-sufficient state between the first and second years of study. Fertilization effects are superimposed on a naturally variable nutrient cycling system, and controls on this variability must be understood if fertilizer response is to be accurately predicted.



2014 ◽  
Vol 30 (5) ◽  
pp. 481-492 ◽  
Author(s):  
Naoyuki Yamashita ◽  
Hiroyuki Sase ◽  
Ryo Kobayashi ◽  
Kok-Peng Leong ◽  
Jamil Mohd Hanapi ◽  
...  

Abstract:Uncertainty about the H+ buffering capacity in tropical rain forest limits our ability to predict the future effect of anthropogenic deposition on the streamwater chemistry. Export of major ions to the stream and the ion-fluxes via rainfall, throughfall, litter-leachate and soil-water pathways were observed to examine the source of streamwater nutrients in a small catchment in Sabah, Malaysia. The streamwater and the ion-fluxes were measured for 3.75 and 2 y, respectively, by collecting water twice a month and setting ion-exchange-resin columns. Streamwater pH ranged from 6.5 to 7.6 and was not sensitive to water discharge controlling base cations. The NO3−-N, Ca2+ and Mg2+ fluxes were low in atmospheric depositions (0.6, 0.5 and 0.3 kg ha−1 y−1, respectively) and markedly increased in the litter layer. The NO3−-N flux decreased drastically from subsoil (70 kg ha−1 y−1) to the stream (1.4 kg ha−1 y−1) whereas the Ca2+ and Mg2+ fluxes were not different between subsoil (38 and 18 kg ha−1 y−1) and stream (30 and 15 kg ha−1 y−1). Neutral pH in tropical streams was mainly due to the base cation leaching with deep chemical weathering in deeper strata, and a rapid decrease in NO3− leaching from the subsoil to the stream.



1979 ◽  
Vol 59 (3) ◽  
pp. 519-529
Author(s):  
J. A. ROBERTSON ◽  
D. A. COOKE ◽  
S. E. BEACOM

Four systems of animal management were applied to a rotationally grazed mixed sward of bromegrass (Bromus inermis Leyss.) and alfalfa (Medicago media Pers.) for a period of 7 yr using yearling beef steers. The systems included (i) put and take stocking; (ii) set stocking at 2.5 steers/ha with surplus herbage conserved as silage and fed later in the season; (iii) set stocking at 3.7 steers/ha, pasture herbage supplemented with oat soilage and (iv) set stocking as in (iii), pasture herbage supplemented with dry-rolled barley. Nitrogen, at the rate of 90 kg N/ha, was applied each spring during the last 4 yr of the experiment. Forage dry matter production varied from 1760 to 5750 kg/ha between years and was highly correlated with precipitation during the growing season. Average daily gains were similar for treatments i–iii at 1.03 kg/head. Feeding supplementary barley increased rate of gain to 1.19 kg (P < 0.01), produced an additional 20 kg liveweight per steer per season and was utilized with an average efficiency of 6.6 kg dry matter per kilogram gain. Average daily gain varied significantly (P < 0.01) between years and was inversely related to dry matter production. The feeding of oat soilage or barley and the harvesting and feeding of silage reduced the variation in gain both within and between seasons compared to the put and take stocking system. Factors affecting the selection of the most appropriate management system by a producer are discussed.



Hydrobiologia ◽  
2007 ◽  
Vol 598 (1) ◽  
pp. 305-314 ◽  
Author(s):  
Kyle S. Herrman ◽  
Virginie Bouchard ◽  
Richard H. Moore


Sign in / Sign up

Export Citation Format

Share Document