Trophic Level Relationships in Pelagic Food Webs: Comparisons Derived from Long-Term Data Sets for Oneida Lake, New York (USA), and Lake St. George, Ontario (Canada)

1992 ◽  
Vol 49 (8) ◽  
pp. 1588-1596 ◽  
Author(s):  
Donald J. McQueen ◽  
Edward L. Mills ◽  
John L. Forney ◽  
Mark R. S. Johannes ◽  
John R. Post

We used standardized methods to analyze a 14-yr data set from Oneida Lake and a 10-yr data set from Lake St. George. We estimated mean summer concentrations of several trophic level indicators including piscivores, planktivores, zooplankton, phytoplankton, and total phosphorus, and we then investigated the relationships between these variables. Both data sets yielded similar long-term and short-term trends. The long-term mean annual trends were that (1) the relationships between concentrations of planktivores and zooplankton (including daphnids) were always negative, (2) the relationships between concentrations of zooplankton and various measures of phytoplankton abundance were unpredictable and never statistically significant, and (3) the relationships between total phosphorus and various measures of phytoplankton abundance were always positive. Over short periods, the data from both lakes showed periodic, strong top-down relationships between concentrations of zooplankton (especially large Daphnia) and chlorophyll a, but these events were unpredictable and were seldom related to piscivore abundance.

2018 ◽  
Vol 11 (2) ◽  
pp. 1207-1231 ◽  
Author(s):  
Taku Umezawa ◽  
Carl A. M. Brenninkmeijer ◽  
Thomas Röckmann ◽  
Carina van der Veen ◽  
Stanley C. Tyler ◽  
...  

Abstract. We report results from a worldwide interlaboratory comparison of samples among laboratories that measure (or measured) stable carbon and hydrogen isotope ratios of atmospheric CH4 (δ13C-CH4 and δD-CH4). The offsets among the laboratories are larger than the measurement reproducibility of individual laboratories. To disentangle plausible measurement offsets, we evaluated and critically assessed a large number of intercomparison results, some of which have been documented previously in the literature. The results indicate significant offsets of δ13C-CH4 and δD-CH4 measurements among data sets reported from different laboratories; the differences among laboratories at modern atmospheric CH4 level spread over ranges of 0.5 ‰ for δ13C-CH4 and 13 ‰ for δD-CH4. The intercomparison results summarized in this study may be of help in future attempts to harmonize δ13C-CH4 and δD-CH4 data sets from different laboratories in order to jointly incorporate them into modelling studies. However, establishing a merged data set, which includes δ13C-CH4 and δD-CH4 data from multiple laboratories with desirable compatibility, is still challenging due to differences among laboratories in instrument settings, correction methods, traceability to reference materials and long-term data management. Further efforts are needed to identify causes of the interlaboratory measurement offsets and to decrease those to move towards the best use of available δ13C-CH4 and δD-CH4 data sets.


2013 ◽  
Vol 35 ◽  
pp. 1-5 ◽  
Author(s):  
G. R. Demarée ◽  
H. Van de Vyver

Abstract. Detailed probabilistic information on the intensity of precipitation in Central Africa is highly needed in order to cope with the risk analysis of natural hazards. In the mountainous areas of Rwanda land slides frequently occur and might cause a heavy toll in human lives. The establishment of Intensity-Duration-Frequency curves for precipitation in Central Africa remains a difficult task as adequate long-term data sets for short aggregation times are usually not available. In 1962 recording raingauges were installed at several stations in Rwanda. According to the climatological procedures in use at that time in Congo, Rwanda and Burundi, maximum monthly and annual precipitation depths for fixed-time durations of 15, 30, 45, 60 and 120 min were determined from the rainfall charts. The data set is completed by the monthly and annual daily precipitation extremes from the non-recording raingauge at the stations. The authors used the dataset to establish the IDF-curves for precipitation at 3 stations in Rwanda having more than 20 yr of operation. The fixed-hour intervals of multiple 15 min require the use of a technique converting data from fixed-time intervals into data of arbitrary starting intervals. Therefore, the van Montfort technique was used.


2012 ◽  
Vol 5 (6) ◽  
pp. 1301-1318 ◽  
Author(s):  
P. J. Nair ◽  
S. Godin-Beekmann ◽  
L. Froidevaux ◽  
L. E. Flynn ◽  
J. M. Zawodny ◽  
...  

Abstract. The long-term evolution of stratospheric ozone at different stations in the low and mid-latitudes is investigated. The analysis is performed by comparing the collocated profiles of ozone lidars, at the northern mid-latitudes (Meteorological Observatory Hohenpeißenberg, Haute-Provence Observatory, Tsukuba and Table Mountain Facility), tropics (Mauna Loa Observatory) and southern mid-latitudes (Lauder), with ozonesondes and space-borne sensors (SBUV(/2), SAGE II, HALOE, UARS MLS and Aura MLS), extracted around the stations. Relative differences are calculated to find biases and temporal drifts in the measurements. All measurement techniques show their best agreement with respect to the lidar at 20–40 km, where the differences and drifts are generally within ±5% and ±0.5% yr−1, respectively, at most stations. In addition, the stability of the long-term ozone observations (lidar, SBUV(/2), SAGE II and HALOE) is evaluated by the cross-comparison of each data set. In general, all lidars and SBUV(/2) exhibit near-zero drifts and the comparison between SAGE II and HALOE shows larger, but insignificant drifts. The RMS of the drifts of lidar and SBUV(/2) is 0.22 and 0.27% yr−1, respectively at 20–40 km. The average drifts of the long-term data sets, derived from various comparisons, are less than ±0.3% yr−1 in the 20–40 km altitude at all stations. A combined time series of the relative differences between SAGE II, HALOE and Aura MLS with respect to lidar data at six sites is constructed, to obtain long-term data sets lasting up to 27 years. The relative drifts derived from these combined data are very small, within ±0.2% yr−1.


2008 ◽  
Vol 65 (7) ◽  
pp. 1366-1378 ◽  
Author(s):  
Brian J. Irwin ◽  
Theodore J. Treska ◽  
Lars G. Rudstam ◽  
Patrick J. Sullivan ◽  
James R. Jackson ◽  
...  

We used three long-term data sets (gill nets, trawls, and adult population estimates) for walleye ( Sander vitreus ) to simultaneously estimate density, gear catchabilities, and mortality using an age-structured, nonlinear model. Model constraints included a fixed natural mortality rate and age- and gear-specific but time-invariant catchabilities. Trawl catchability decreased with age, whereas gillnet catchability increased towards a maximum by age-4. A sensitivity analysis was conducted to investigate how the information content of the different data sets influenced parameter estimates. Estimated catchability values were relatively robust to changes in data weighting. Estimated gillnet catchability values were fairly consistent with those derived from more conventional methods. An additional mortality term was added to reflect double-crested cormorant ( Phalacrocorax auritus ) predation, and vulnerabilities associated with angling and cormorants were calculated using independent length frequency information. Estimated subadult mortality increased and the influence of fishing mortality slightly decreased during recent years when double-crested cormorants were abundant and more restrictive size limits were in place. Walleye density in Oneida Lake (New York, USA) in the last decade is estimated to be approximately half of that before 1990.


1991 ◽  
Vol 1991 (1) ◽  
pp. 489-492 ◽  
Author(s):  
G. A. Sergy ◽  
B. Humphrey ◽  
E. Owens

ABSTRACT The prediction of stranded oil fate and natural removal rates is essential to the selection of environmentally appropriate shoreline cleanup techniques, environmental priorities and tradeoffs. Our experience is that monitoring and describing stranded oil fate and persistence is not an exact science. Interpretation of data requires a careful and experienced approach. The need for a consistent long-term data set and appropriate methodology is stressed. A review of the different data and indices leads to the conclusion that length of oiled shoreline is unsuitable as a detailed measure of the degree of oiling and of changes in shoreline oiling. Length (and width) data are more appropriate for scoping estimates and qualitative uses. On coarse or mixed sediment beaches, quantitative oil penetration and concentration data are very difficult to obtain and interpret, affecting the calculation of oil volumes or oiled sediment volumes. Equivalent Area (EA) oiled appears to be the most appropriate and practical all-round index for the degree of shoreline oiling and for comparing temporal changes. Surface oil cover data become less representative of subsurface oil over time due to differential removal rates. Indices of change of beached oil and data sets generated from various spill monitoring programs are examined. Long-term data from the Baffin Island Oil Spill Project provide information on rates of change that can be applied to projections for real-world spills, by representing one worse-case boundary condition for coarse sediment beaches.


2012 ◽  
Vol 5 (1) ◽  
pp. 471-516
Author(s):  
P. J. Nair ◽  
S. Godin-Beekmann ◽  
L. Froidevaux ◽  
L. E. Flynn ◽  
J. M. Zawodny ◽  
...  

Abstract. The long-term evolution of stratospheric ozone at different stations in the low and mid-latitudes is investigated. The analysis is performed by comparing the collocated profiles of ozone lidars, at the northern mid-latitudes (Meteorological Observatory Hohenpeißenberg, Haute-Provence Observatory, Tsukuba and Table Mountain Facility), tropics (Mauna Loa Observatory) and southern mid-latitudes (Lauder), with ozonesondes and space-borne sensors (SBUV(/2), SAGE II, HALOE, UARS MLS and Aura MLS), extracted around the stations. Relative differences are calculated to find biases and temporal drifts in the measurements. All measurement techniques show their best agreement with respect to the lidar at 20–40 km, where the differences are within ±3% and drifts are less than ±0.3% yr−1 at all stations. In addition, the stability of the long-term ozone observations (lidar, SBUV(/2), SAGE II and HALOE) is evaluated by the cross-comparison of each data set. In general, all lidars and SBUV(/2) exhibit near zero drifts and the comparison between SAGE II and HALOE shows larger, but insignificant drifts. The RMS of the drifts of lidar and SBUV(/2) is 0.22 and 0.27% yr−1, respectively. The average drifts of the long-term data sets, derived from various comparisons, are less than ±0.3% yr−1 in 20–40 km at all stations. A combined time series of the relative differences between SAGE II, HALOE and Aura MLS with respect to lidar data at six sites is constructed, to obtain long-term data sets lasting up to 27 yr. The relative drifts derived from these combined data are very small, within ±0.2% yr−1.


2021 ◽  
Author(s):  
Kristen Manies ◽  
Jennifer Harden ◽  
William Cable ◽  
Jamie Hollingsworth

2017 ◽  
Vol 13 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Daniela Štaffenová ◽  
Ján Rybárik ◽  
Miroslav Jakubčík

AbstractThe aim of experimental research in the area of exterior walls and windows suitable for wooden buildings was to build special pavilion laboratories. These laboratories are ideally isolated from the surrounding environment, airtight and controlled by the constant internal climate. The principle of experimental research is measuring and recording of required physical parameters (e.g. temperature or relative humidity). This is done in layers of experimental fragment sections in the direction from exterior to interior, as well as in critical places by stable interior and real exterior climatic conditions. The outputs are evaluations of experimental structures behaviour during the specified time period, possibly during the whole year by stable interior and real exterior boundary conditions. The main aim of this experimental research is processing of long-term measurements of experimental structures and the subsequent analysis. The next part of the research consists of collecting measurements obtained with assistance of the experimental detached weather station, analysis, evaluation for later setting up of reference data set for the research locality, from the point of view of its comparison to the data sets from Slovak Hydrometeorological Institute (SHMU) and to localities with similar climate conditions. Later on, the data sets could lead to recommendations for design of wooden buildings.


Author(s):  
Julia Nowack ◽  
Christopher Turbill

AbstractMaintaining a high and stable body temperature as observed in endothermic mammals and birds is energetically costly. Thus, it is not surprising that we discover more and more heterothermic species that can reduce their energetic needs during energetic bottlenecks through the use of torpor. However, not all heterothermic animals use torpor on a regular basis. Torpor may also be important to an individual’s probability of survival, and hence fitness, when used infrequently. We here report the observation of a single, ~ 5.5 h long hypothermic bout with a decrease in body temperature by 12 °C in the native Australian bush rat (Rattus fuscipes). Our data suggest that bush rats are able to rewarm from a body temperature of 24 °C, albeit with a rewarming rate lower than that expected on the basis of their body mass. Heterothermy, i.e. the ability to withstand and overcome periods of reduced body temperature, is assumed to be an evolutionarily ancestral (plesiomorphic) trait. We thus argue that such rare hypothermic events in species that otherwise appear to be strictly homeothermic could be heterothermic rudiments, i.e. a less derived form of torpor with limited capacity for rewarming. Importantly, observations of rare and extreme thermoregulatory responses by wild animals are more likely to be discovered with long-term data sets and may not only provide valuable insight about the physiological capability of a population, but can also help us to understand the constraints and evolutionary pathways of different phenologies.


2018 ◽  
Vol 1 (4) ◽  
pp. e00080
Author(s):  
A.V. Mikurova ◽  
V.S. Skvortsov

The modeling of complexes of 3 sets of steroid and nonsteroidal progestins with the ligand-binding domain of the nuclear progesterone receptor was performed. Molecular docking procedure, long-term simulation of molecular dynamics and subsequent analysis by MM-PBSA (MM-GBSA) were used to model the complexes. Using the characteristics obtained by the MM-PBSA method two data sets of steroid compounds obtained in different scientific groups a prediction equation for the value of relative binding activity (RBA) was constructed. The RBA value was adjusted so that in all samples the actual activity was compared with the progesterone activity. The third data set of nonsteroidal compounds was used as a test. The resulted equation showed that the prediction results could be applied to both steroid molecules and nonsteroidal progestins.


Sign in / Sign up

Export Citation Format

Share Document