Sites of Methyl Mercury Production in Remote Canadian Shield

1993 ◽  
Vol 50 (5) ◽  
pp. 972-979 ◽  
Author(s):  
P. S. Ramlal ◽  
C. A. Kelly ◽  
J. W. M. Rudd ◽  
A. Furutani

Methylation and demethylation of mercury were studied in sediments and surface waters of several remote lakes on the Canadian Shield. Radiochemical assays of mercury methylating activity, which peaked during summer, were 20–40 times faster in epilimnetic than in hypolimnetic sediments. Demethylation rates were usually highest during winter and in hypolimnetic sediments. Epilimnetic sediments were capable of producing methyl mercury 20–40 times faster than hypolimnetic sediments sampled at the same time, with methylating activity peaking during the warm summer months. Because of the opposite pattern of methylating and demethylating activity and because epilimnetic sediments often constitute most of the surface area of these lakes, most of the net methylation (M/D) occurred in the epilimnion of the lakes during summer. Mercury methylation rates were not related to average sediment mercury concentrations, or directly to rates of microbial activity (decomposition) in sediments. It appeared that increasing temperature was an important controlling factor that stimulated methylation but retarded demethylation. Specific methylation rates, M/D, and the measured concentration of methyl mercury in the surface waters of the lakes all peaked during midsummer, suggesting that the radiochemical assays used reflected changes in the relative activities of natural methylating and demethylating microorganisms.


1987 ◽  
Vol 44 (4) ◽  
pp. 750-757 ◽  
Author(s):  
Luying Xun ◽  
N. E. R. Campbell ◽  
John W. M. Rudd

Specific rates of mercury methylation and demethylation were determined for water and surficial sediment samples taken from several lakes located in the Experimental Lakes Area, northwestern Ontario. Specific rates of mercury methylation were found to increase with decreasing pH in epilimnetic water samples in which pH was adjusted prior to incubation and in epilimnetic water samples taken from lakes of different pH. Reduction of pH also increased methyl mercury production at the sediment surface. Both increases and decreases in pH reduced specific rates of mercury demethylation. However, these changes were smaller than for methylation. Proportionally, specific rates of methylation increased faster than increasing concentrations of Hg2+, while specific rates of mercury demethylation increased linearly with increasing concentrations of methyl mercury. Overall, this study predicts that the net rate of methyl mercury production in the water column and at the sediment–water surface will increase as a result of lake acidification, and this may at least partially explain why the mercury concentration of fish appears to increase during lake acidification.



1985 ◽  
Vol 42 (4) ◽  
pp. 685-692 ◽  
Author(s):  
P. S. Ramial ◽  
John W. M Rudd ◽  
Akira Furutam ◽  
Luying Xun

Mercury methylation was measured in surficial sediments taken from unacidified and experimentally acidified lakes in the Experimental Lakes Area, northwestern Ontario. A reduction in the pH of sediments lowered the rate of 203Hg methylation. Methylation was undetectable at pH <5.0. This decrease in mercury methylation was probably related to a shortage of available inorganic mercury when the pH of the sediment porewater was reduced. Below pH 6.0, inorganic mercury concentrations in porewater, measured with 203Hg, were reduced to less than 20% of that found at unaltered pH. A comparison of methylation and demethylation rates was made at various pH's. The rate of demethylation decreased to a lesser extent than methylation as the pH was lowered. This research indicates that enhanced mercury methylation in the sediment is not responsible for the observed increase in mercury levels in fish from acidified lakes.



1985 ◽  
Vol 50 (4) ◽  
pp. 947-955 ◽  
Author(s):  
Karel Klouda ◽  
Václav Rak ◽  
Josef Vachuška

Intercalation of UF6 into graphite, both from the gaseous phase and from the Ledon 113 solution, was studied. The amount of intercalated UF6 from the gaseous phase was found to be inversely proportional to the size of graphite particles. Intercalation increases with the increasing temperature and surface area of graphite. The contact of gaseous UF6 with graphite led to the formation of β-UF5 that is not intercalated. In the Ledon solution, β-UF5 is not formed. "Passivation" of graphite by elementary fluorine also prevents the formation of β-UF5 but the amount of intercalated UF6 decreases. The intercalation of UF6 into graphite from the gaseous phase is accompanied by the increase of the distance between the parallel carbon atom layers up to the values of about 884 pm. Ternary intercalates graphite-UF6-Ledon 113 are formed during the intercalation of UF6 from the Ledon 113 solutions and the distance between the parallel carbon atom layers is 848-875 pm. Thermogravimetry in the presence of air revealed that the binary intercalates graphite-UF6 decompose in a 3-step reaction while the ternary intercalates decompose in a 4-step reaction. In both cases uranium hexafluoride is not released but acts as a fluorination agent on the graphite carbon.



1993 ◽  
Vol 10 (1-4) ◽  
pp. 75-84 ◽  
Author(s):  
S.S. Barton ◽  
M.J.B. Evans ◽  
J.A.F. Macdonald

A series of oxidized carbons has been prepared by treatment of the carbon with concentrated nitric acid at various temperatures, and the surface and adsorption properties of the prepared carbons studied. Water adsorption was modelled using a recently derived equation capable of predicting a value for the primary adsorption sites on the surface of a microporous carbon while fitting the experimentally determined isotherm at high relative pressures. The concentration of primary sites was seen to increase with increasing temperature of oxidation. The very highly oxidized carbon samples were found to have a significantly lower BET surface area determined from nitrogen desorption at 77 K and higher apparent density measured from mercury displacement.





1991 ◽  
Vol 6 (5) ◽  
pp. 1040-1047 ◽  
Author(s):  
K. Kuriyama ◽  
M.S. Dresselhaus

The conductivity and photoconductivity are measured on a high-surface-area disordered carbon material, i.e., activated carbon fibers, to investigate their electronic properties. This material is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000–2000 m2/g. Our preliminary thermopower measurements show that the dominant carriers are holes at room temperature. The x-ray diffraction pattern reveals that the microstructure is amorphous-like with Lc ≃ 10 Å. The intrinsic electrical conductivity, on the order of 20 S/cm at room temperature, increases by a factor of several with increasing temperature in the range 30–290 K. In contrast, the photoconductivity in vacuum decreases with increasing temperature. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The recombination kinetics changes from a monomolecular process at room temperature to a bimolecular process at low temperatures, indicative of an increase in the photocarrier density at low temperatures. The high density of localized states, which limits the motion of carriers and results in a slow recombination process, is responsible for the observed photoconductivity.



2016 ◽  
Vol 14 (1) ◽  
pp. 445-451
Author(s):  
Aliakbar Roosta ◽  
Jafar Javanmardi ◽  
Elham Sadat Behineh

AbstractIn this study, a new approach is proposed to investigate the kinetics of sunflower oil and rapeseed oil transesterification in the presence of potassium hydroxide. Transesterification is a heterogeneous process which affected by a number of parameters, that are not readily available in the literature, such as mass transfer coefficients, partition coefficients, and specific surface area of the dispersed phase. However, under intense agitation condition, mass transfer restrictions may be neglected, and the two phases are supposed to remain in thermodynamic equilibrium, during the process. Therefore, a model was developed independent of the mass transfer coefficient and specific surface area, which is reliable for the intense agitation condition. According to the results, the model is valid at least for mixing rates over 500 rpm. The results of the model were used to study the effects of temperature, methanol-to-oil ratio, and catalyst concentration on the biodiesel conversion. Biodiesel production rate increases with increasing temperature, although rapeseed oil transesterification is more temperature dependent. The results show that the maximum amount of catalyst concentration is less than 1% (by weight); however, the optimum value depends on the operating temperature. The optimum value of the methanol-to-oil-ratio decreases with increasing temperature. Thus, at higher temperatures, less amount of methanol and catalyst are required, which leads to easier purification of biodiesel.



1997 ◽  
Vol 54 (10) ◽  
pp. 2215-2227 ◽  
Author(s):  
Pierre D'Arcy ◽  
Richard Carignan

For 30 Canadian Shield lakes of southeastern Quebec, catchment slope and lake morphometry account for 50-70% of the variability of chlorophyll a (Chl a), dissolved organic carbon (DOC), total phosphorus (TP), NO3- , and NH4+ . Dissolved organic carbon, TP, Chl a, Ca, and Mg are negatively related to catchment slope, whereas NO3- and NH4+ increase with increasing slope. Concentrations of more conservative constituents (SO42-, Na, K) increase with decreasing elevation as a result of higher evapotranspiration and lower precipitation at low elevations. Catchment variables (slope, drainage area, percent wetlands) are as good predictors of Chl a (r2 = 0.7) as are water chemistry variables (TP, Ca, Mg, and pH). Dominant vegetation (deciduous vs. coniferous) has little or no influence on lake water chemistry. Hydrogeological data for the Canadian Shield suggest that, during periods of high runoff, the development of waterlogged areas and the importance of overland flow on saturated soils are inversely proportional to catchment slope. We propose that the strong influence of catchment slope on water quality is due to slope-dependent seasonal waterlogging, which determines the fate (retention or export to surface waters) of dissolved substances produced within and moving through the forest floor.



Sign in / Sign up

Export Citation Format

Share Document