scholarly journals Oxidized BPL Carbons

1993 ◽  
Vol 10 (1-4) ◽  
pp. 75-84 ◽  
Author(s):  
S.S. Barton ◽  
M.J.B. Evans ◽  
J.A.F. Macdonald

A series of oxidized carbons has been prepared by treatment of the carbon with concentrated nitric acid at various temperatures, and the surface and adsorption properties of the prepared carbons studied. Water adsorption was modelled using a recently derived equation capable of predicting a value for the primary adsorption sites on the surface of a microporous carbon while fitting the experimentally determined isotherm at high relative pressures. The concentration of primary sites was seen to increase with increasing temperature of oxidation. The very highly oxidized carbon samples were found to have a significantly lower BET surface area determined from nitrogen desorption at 77 K and higher apparent density measured from mercury displacement.

2004 ◽  
Vol 67 (2) ◽  
pp. 160-169 ◽  
Author(s):  
Pierre Delmelle ◽  
Fr�d�ric Villi�ras ◽  
Manuel Pelletier

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Guotao Zhao ◽  
Zhenxiao Zhao ◽  
Junliang Wu ◽  
Daiqi Ye

Fluorine-containing hydrophobic mesoporous material (MFS) with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1and 0.74 cm3 g−1with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.


2014 ◽  
Vol 625 ◽  
pp. 24-28
Author(s):  
Muhammad Falaq Muhammad Faisal ◽  
Ahmad Rafizan Mohamad Daud ◽  
Kamariah Noor Ismail

Four samples of covalent organic framework-1 (COF-1) assigned as S1 to S4 were prepared by varying the initial mass of 1,4-benzene diboronic acid (BDBA) used and heating condition. The samples were physically characterized using Brunauer–Emmett–Teller (BET) surface area analysis and FESEM analysis. The BET surface area value showed an increasing trend with increasing mass of BDBA used. The highest achievable BET surface area is recorded by COF-1 (S3) with a value of 107.9 m2/g. The low surface area obtained is likely due to the distribution of particles with large pore sizes. This is confirmed by the Field Emission Scanning Electron Microscopy (FESEM) images which correlate well with the surface area obtained. The presence of dendrites phase within the COF-1 structure also indicates incomplete formation of a crystalline structure, hence contributed to the low surface area achieved. It was also found that the use of ramping heating did not significantly influence the formation of COF-1 crystalline structure which promotes the surface area.


2007 ◽  
Vol 1041 ◽  
Author(s):  
Erin Whitney ◽  
Anne C. Dillon ◽  
Calvin Curtis ◽  
Chaiwat Engtrakul ◽  
Kevin O'Neill ◽  
...  

AbstractExperimental wet chemical approaches have been demonstrated in the synthesis of a new chainlike (C60-Fe-C60-Fe)n complex. This structure has been proposed based on 13C solid-state nuclear magnetic resonance, electron paramagnetic resonance, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. Furthermore, this structure has been shown to have unique binding sites for dihydrogen molecules with the technique of temperature-programmed desorption. The new adsorption sites have binding energies that are stronger than that observed for hydrogen physisorbed on planar graphite, but significantly weaker than a chemical C-H bond. Volumetric measurements at 77 K and 2 bar show a hydrogen adsorption capacity of 0.5 wt%. Interestingly, the BET surface area is ∼31 m2/g after degassing, which is approximately an order of magnitude less than expected given the measured experimental hydrogen capacity. Nitrogen and hydrogen isotherms performed at 75 K also show a marked selectivity for hydrogen over nitrogen for this complex, indicating hidden surface area for hydrogen adsorption.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Chu-Chin Hsieh ◽  
Jyong-Sian Tsai ◽  
Hwo-Shuenn Sheu ◽  
Jen-Ray Chang

V2O5/NaY-SiO2 adsorbents were prepared by soaking up vanadium oxalate precursors into pellet NaY-SiO2. The NaY-SiO2 supports were prepared from NaY-SiO2 dough followed by extrusion and calcination at 450 °C. Ethanol was used as a model adsorbate to test the performance of the adsorbents. The regeneration efficacy, defined as the ratio of the adsorption capacity of a regenerated adsorbent to that of the fresh adsorbent, was investigated through the dynamics of fixed-bed adsorption (breakthrough curve). TPO, DSC, and FT-IR were used to characterize carbonaceous species on the adsorbents; meanwhile, synchrotron XRPD, XAS, and the N2 isotherm were used to characterize the zeolite, vanadia structure, and surface area, respectively. The results indicated that in low temperature (300 °C) regeneration, adsorption sites covered by alkylated aromatic coke formed during regeneration, causing adsorbent deactivation. In contrast, during regeneration at a high temperature (450 °C), the deactivation was caused by the destruction of the NaY framework concomitant with channel blockage, as suggested by the BET surface area combined with Rietvelt XRPD refinement results. In addition, the appearance of V-O-V contribution in the EXAFS spectra indicated the aggregation of isolated VO4, which led to a decrease in the combustion rate of the carbonaceous species deposited on the adsorbents. For regeneration at 350 and 400 °C, only trace coke formation and minor structural destruction were observed. Long-term life tests indicated that regeneration at 400 °C presents a higher maintenance of stability.


2020 ◽  
Vol 81 (5) ◽  
pp. 906-914
Author(s):  
Xiangfeng Yue ◽  
Jianhai Zhao ◽  
Huanhuan Shi ◽  
Yongzhi Chi ◽  
Muhammad Salam

Abstract Activated carbon (AC) was modified by MgO and MnO2 through an impregnation-precipitation-calcination procedure. The batch experiments of adsorption of Rhodamine B (RB) by a modified adsorption material, an MgO-MnO2-AC composite, were carried out and the characteristics of the composite adsorbent were evaluated. The results showed that manganese/magnesium loading changed the surface area, pore volume and increased the number of active adsorption sites of AC. The highest Brunauer-Emmett-Teller (BET) surface area (1,036.18 m2·g−1) was obtained for MgO-MnO2-AC compared with AC. The content of AC loaded with magnesium and manganese was 34.24 and 5.51 mg·g−1 respectively. The adsorption of RB on MgO-MnO2-AC was significantly improved. The maximum adsorption capacity of RB on MgO-MnO2-AC was 16.19 mg·g−1 at 25 °C under the RB concentration of 50 mg·L−1. The adsorption of RB by AC and MgO-MnO2-AC increased with the initial concentration of RB. The adsorption of RB increased first and then decreased when pH was between 3 and 11. The results indicated that the pseudo-second-order kinetic equation and Langmuir equation can be used to describe the adsorption of RB on MgO-MnO2-AC.


2012 ◽  
Vol 626 ◽  
pp. 706-710 ◽  
Author(s):  
Athiwat Sirimuangjinda ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

Two activated carbons employing Scrap Tire as precursor were produced by using two different activating agents, HCl and H2SO4 (fixed impregnation ratio 1:1). Both of activated carbons were allowed by single-step to get difference carbonized at 500, 600 and 700°C in a muffle furnace for 1 h. Activated carbons differed with the physical structure, chemical and adsorption properties which were derived from Scanning Electron Microscope, and N2 adsorption/desorption isotherms. Batched sorption studies were performed to compare the iodine and methylene blue adsorption properties of two carbons. The carbon materials obtained from sulfuric acid activation of 500°C has BET surface area as high as 1066.70 m2/g, Methylene blue adsorption and Iodine number of 288.90 and 590.50 mg/g, respectively. The surface area and adsorption properties of carbon produced using sulfuric acid activation were higher than that produced using hydrochloric acid activation. The results suggest the feasibility of the process from the point of view of both porous texture and adsorption yield.


Soil Research ◽  
2001 ◽  
Vol 39 (5) ◽  
pp. 1105 ◽  
Author(s):  
R. L. Parfitt ◽  
J. S. Whitton ◽  
B. K. G. Theng

The measurement of the specific surface area of soils may be useful for ranking soils in their ability to sorb polar compounds such as some pesticides and pollutants. For A horizons with varied mineralogy, particularly those containing large amounts of soil organic matter, this is problematic. We have estimated the surface area of a range of topsoils from water adsorption using the BET equation. The values obtained were greater than those measured from the adsorption of para-nitrophenol. There was a good relationship between the BET water area and the CEC of the samples (r2 = 0.83). There was a better relationship between the BET surface area and the water content of air-dry topsoils (r 2 = 0.98). We suggest that the air-dry water contents of topsoils could be used as a quick method to rank soils in order of their surface reactivity towards polar molecules, and this is preferable to more complicated methods.


In this paper, easy, rapid and cheap synthetic method was described for florfenicol-silver nanocomposite by sonochemical method. Florfenicol-silver nanocomposite was characterized based on three classes namely index, identification and morphology class. Index characterization was carried out by zeta sizing, BET surface area and zeta potential. Identification characterization was performed using X-ray diffraction (XRD) and Raman spectrometry. Morphology characterization was done utilizing transmission electron microscope (TEM), scanning electron microscope (SEM) and atomic force microscope (AFM). Characterization results showed zeta sizing of florfenicol was 30.44nm, while florfenicol-silver nanocomposite was 33.5 nm with zeta potential -14.1 and -18, respectively. BET surface area was found to be 13.3, 73.2 and 103.69 m2/g for florfenicol, silver nanoparticles and florfenicol-silver nanocomposite respectively. XRD and Raman charts confirmed the formation of florfenicol-silver nanocomposite without any contamination. TEM, SEM and AFM spectral data illustrated spherical to sub spherical shape of silver nanoparticles on cubic to sheet shape of florfenicol with size less than 50 nm. Antimicrobial activity was screened where the average zone of inhibitions caused by the prepared nanocomposite were 28.3 mm, 24 mm, 27.3 mm and 24 mm compared to 17.7 mm, 16 mm, 18.7 mm and 13.3 mm of the native drug and 13 mm, 10 mm, 14.3 mm and 15 mm of the used positive reference standards against E. coli, Salmonella typhymurium, Staphylococcus aureus and Staph.aureus MRSA respectively.


Author(s):  
Reza Yazdanpanah ◽  
Eshagh Moradiyan ◽  
Rouein Halladj ◽  
Sima Askari

Aim and Objective: The research focuses on recent progress in the production of light olefins. Hence, the common catalyst of the reaction (SAPO-34) deactivates quickly because of coke formation, we reorganized the mechanism combining SAPO-34 with a natural zeolite in order to delay the deactivation time. Materials and Methods: The synthesis of nanocomposite catalyst was conducted hydrothermally using experimental design. Firstly, Clinoptilolite was modified using nitric acid in order to achieve nano scaled material. Then, the initial gel of the SAPO-34 was prepared using DEA, aluminum isopropoxide, phosphoric acid and TEOS as the organic template, sources of Aluminum, Phosphor, and Silicate, respectively. Finally, the modified zeolite was combined with SAPO-34's gel. Results: 20 different catalysts due to D-Optimal design were synthesized and the nanocomposite with 50 weight percent of SAPO-34, 4 hours Crystallization and early Clinoptilolite precipitation showed the highest relative crystallinity, partly high BET surface area and hierarchical structure. Conclusion: Different analysis illustrated the existence of both components. The most important property alteration of nanocomposite was the increment of pore mean diameters and reduction in pore volumes in comparison with free SAPO-34. Due to low price of Clinoptilolite, the new catalyst develops the economy of the process. Using this composite, according to formation of multi-sized pores located hierarchically on the surface of the catalyst and increased surface area, significant amounts of Ethylene and Propylene, in comparison with free SAPO-34, were produced, as well as deactivation time that was improved.


Sign in / Sign up

Export Citation Format

Share Document