Effect of pH and Dissolved Organic Carbon on the Toxicity of Copper to Larval Fathead Minnow (Pimephales promelas) in Natural Lake Waters of Low Alkalinity

1993 ◽  
Vol 50 (7) ◽  
pp. 1356-1362 ◽  
Author(s):  
P. G. Welsh ◽  
J. F. Skidmore ◽  
D. J. Spry ◽  
D. G. Dixon ◽  
P. V. Hodson ◽  
...  

The impacts of pH and dissolved organic carbon (DOC) on the acute toxicity of Cu to larval fathead minnow (Pimephales promelas) were determined using natural soft water from two Precambrian Shield lakes in south-central Ontario. By artificially manipulating the pH and DOC levels of the water, we demonstrated that both acidification and the removal of DOC increased the toxicity of Cu. The 96-h Cu LC50s were determined over a pH range from 5.4 to 7.3 and a DOC concentration range from 0.2 to 16 mg∙L−1. The LC50s ranged from a low of 2 μg∙L−1 (pH 5.6, DOC 0.2 mg∙L−1) to a high of 182 μg∙L−1 (pH 6.9, DOC 15.6 mg∙L−1). A multiple regression model (log1096-h Cu LC50 = −0.308 + 0.192 pH + 0.136 (pH∙log10DOC)) was used to describe the relationship between Cu toxicity, pH, and DOC. The model was significant (p < 0.00001) and explained 93% of the variability in the toxicity data. These results suggest that current water quality objectives for Cu, and possibly for other metals, may not be sufficiently protective of aquatic life in soft, moderately acidic water containing low levels of DOC.

1993 ◽  
Vol 50 (12) ◽  
pp. 2667-2677 ◽  
Author(s):  
Richard C. Playle ◽  
D. George Dixon ◽  
Kent Burnison

Adult fathead minnows (Pimephales promelas) were exposed to 17 g Cu∙L−1 or 6 g Cd∙L−1 for 2 to 3 h in synthetic softwater solutions at pH 6.2 containing either naturally-occurring, freeze-dried dissolved organic carbon (DOC) or synthetic ligands such as EDTA. After exposures, gills were assayed for bound Cu or Cd. As a first approximation, lake of origin or molecular size fraction of DOC did not influence Cu binding to gills, while DOC concentration did. DOC concentrations ≥4.8 mg∙L−1 prevented Cu from accumulating on fathead gills. At the relatively low concentrations used, neither Cu nor Cd interfered with binding of the other metal on gills, suggesting different gill binding sites. Cadmium accumulation on gills was more sensitive to increased concentrations of Ca and H+ than was Cu. Surprisingly, Cd bound to gills to the same or greater extent than did Cu: for synthetic ligands, Cd binds less well than Cu. This result corroborates previously published observations that Cd, unlike Cu, is taken up at gills through high affinity Ca channels. Accumulation of Cd on fish gills was never associated with 14C-labelled EDTA or 14C-citrate, indicating that free metal interacts with the gill while metal–ligand complexes usually do not.


2005 ◽  
Vol 62 (2) ◽  
pp. 341-347 ◽  
Author(s):  
W. (Bill) Keller ◽  
Jocelyne Heneberry ◽  
Julie Leduc

To investigate potential effects of climate change on lake thermal structure, we examined relationships between the amount of cold-water habitat in late summer (defined as the 10 °C depth), summer weather, and dissolved organic carbon (DOC) concentration over a two-decade period (1981–2002) in a small Boreal Shield lake recovering from acidification. DOC concentration, wind-days (the product of mean daily wind speed and the number of days between ice-out and late-summer stratification), and mean daily temperature were significant predictors of the 10 °C depth in a multiple-regression model. A similar model using simply the number of ice-free days instead of wind-days was almost as effective. The models were quite successful in explaining interannual variations in the 10 °C depth when tested on a chemically and morphometrically similar nearby lake. While factors related to summer weather were important in explaining interannual variations in the amount of late-summer cold-water habitat, increased DOC concentration over the study period largely explained observed long-term decreases in the 10 °C depth (increases in cold-water habitat). DOC concentration was positively correlated with pH. In acidified regions, increases in DOC that accompany the recovery of acidified lakes will need to be considered in assessments of potential climate-change effects on lake thermal structure.


2008 ◽  
Vol 65 (5) ◽  
pp. 796-808 ◽  
Author(s):  
M Catherine Eimers ◽  
Jim Buttle ◽  
Shaun A Watmough

Dissolved organic carbon (DOC) fluxes at eight headwater basins in south-central Ontario were strongly related to seasonal streamflow, and extreme events contributed to both interannual and intercatchment variability. Six catchments with high stream DOC and greater peatland coverage exhibited a different seasonal pattern of DOC concentration compared with two catchments with low DOC and less wetland influence. In wetland-dominated catchments, DOC concentrations decreased during fall wet-up and spring melt, and because of the dominance of the spring melt period in annual budgets, variations in spring flow explained 39%–48% of the intervariability in DOC concentration. Significant increases in average DOC concentration between 1980 and 2001 at all six wetland-dominated catchments were driven by relatively high DOC concentrations in the latter years of record, consistent with low spring flow in these years, and were not translated into greater DOC export to downstream lakes. Localized rainstorms in summer and fall resulted in differences in DOC export among adjacent catchments, and a single fall storm in September 1998 was only detected at one of six catchments draining into Harp Lake but accounted for one-quarter of the annual tributary DOC load to the lake.


2011 ◽  
Vol 8 (12) ◽  
pp. 3661-3675 ◽  
Author(s):  
M. I. Stutter ◽  
D. G. Lumsdon ◽  
A. P. Rowland

Abstract. Moorland carbon reserves in organo-mineral soils may be crucial to predicting landscape-scale variability in soil carbon losses, an important component of which is dissolved organic carbon (DOC). Surface water DOC trends are subject to a range of scaling, transport and biotic processes that disconnect them from signals in the catchment's soils. Long-term soil datasets are vital to identify changes in DOC release at source and soil C depletion. Here we show, that moorland soil solution DOC concentrations at three key UK Environmental Change Network sites increased between 1993–2007 in both surface- and sub- soil of a freely-draining Podzol (48 % and 215 % increases in O and Bs horizons, respectively), declined in a gleyed Podzol and showed no change in a Peat. Our principal findings were that: (1) considerable heterogeneity in DOC response appears to exist between different soils that is not apparent from the more consistent observed trends for streamwaters, and (2) freely-draining organo-mineral Podzol showed increasing DOC concentrations, countering the current scientific focus on soil C destabilization in peats. We discuss how the key solubility controls on DOC associated with coupled physico-chemical factors of ionic strength, acid deposition recovery, soil hydrology and temperature cannot readily be separated. Yet, despite evidence that all sites are recovering from acidification the soil-specific responses to environmental change have caused divergence in soil DOC concentration trends. The study shows that the properties of soils govern their specific response to an approximately common set of broad environmental drivers. Key soil properties are indicated to be drainage, sulphate and DOC sorption capacity. Soil properties need representation in process-models to understand and predict the role of soils in catchment to global C budgets. Catchment hydrological (i.e. transport) controls may, at present, be governing the more ubiquitous rises in river DOC concentration trends, but soil (i.e. source) controls provide the key to prediction of future C loss to waters and the atmosphere.


2011 ◽  
Vol 74 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Krzysztof Banaś

The effect of dissolved organic carbon (DOC) on the environmental conditions of macrophytes has been studied in 35 lakes divided into soft- and hardwater: oligohumic (&lt;4.0 mg C dm<sup>-3</sup>), α-mesohumic (4.0-8.0 mg C dm<sup>-3</sup>), β-mesohumic (8.1-16.0 mg C dm<sup>-3</sup>) and polihumic (&gt;16.0 mg C dm<sup>-3</sup>). The optimum environmental conditions for macrophytes have been found in oligohumic lakes, characterised by low water colour and its good transparency. In soft- and hardwater lakes increasing concentration of DOC is accompanied with an increase in the colour (r=0.95), while the visibility decreases. With increasing DOC in the near-sediment layer the pH values decrease while the concentration of nitrogen increases and the concentration of phosphorus slightly increases. In hardwater lakes with increasing DOC concentration, the redox potential, conductivity, total hardness and calcium concentration in the near-sediment water decrease, whereas the content of CO<sup>2</sup> remains at a very low level.


Author(s):  
Brianna Jackson

The extraction of bitumen from Alberta’s oil sands region generates large volumes of oil sands process-affected water (OSPW) that is stored in tailings ponds. Toxic constituents present in OSPW such as naphthenic acid fraction components (NAFCs) can cause adverse effects to aquatic life. Recent research has focused on the toxicity of NAFCs to highly vulnerable early life stages of fish. Here we examined the embryotoxicity of NAFCs (0-54 mg/L) extracted from OSPW to native fathead minnow (Pimephales promelas) from 1-day post-fertilization to hatch in a semi-natural setting at Queen’s University’s Biological Station. Embryo heart rate, mortality, prevalence and severity of malformations at hatch, post-hatch mass, and basal activity at hatch was examined. Embryo heart rates declined with increasing NAFC concentration, preceding pronounced exposure-response patterns of mortality and non-viable hatches. Visible malformations included cardiovascular (pericardial edema; present in 81.51% of non-viable hatches), craniofacial (reduced jaw and head size; 68.96%), myoskeletal (spinal curvatures; 60.90%), and peritoneal (yolk sac edema; 26.44%) malformations, that significantly increased in severity with increasing NAFC concentration. Fish that survived lethal concentrations displayed evidence of nervous system impairment including elevated patterns of erratic twitching. Post-hatch mass generally increased with increasing NAFC exposure, potentially as a compensatory-like response. Results of this work are the first to be reported in a semi-natural exposure setting and provide important toxicological information that will aid future policy directives for the management of OSPW in Alberta, Canada.


1986 ◽  
Vol 84 ◽  
Author(s):  
J.I. Kim ◽  
G. Buckau ◽  
W. Zhuang

AbstractThe generation of humic colloids of Am(III) has been investigated in Gorleben groundwaters containing different amounts of humic substances. Dissolved organic carbon (DOC) in these groundwaters consists mainly of humic acid and fulvic acid, which is present in a colloidal form through aggregation with trace heavy metal ions of groundwater constituents. Concentrations of these heavy metal ions are proportional to the DOC concentration. The generation of Am(III) pseudocolloids through geochemical interactions with humic colloids in different groundwaters is quantified by ultrafiltration as well as ultracentrifugation by the aid of radiometric concentration measurements. The speciation of dissolved Am(III) species in groundwaters is carried out by laser induced photoacoustic spectroscopy (LPAS).


2018 ◽  
Vol 11 (2) ◽  
pp. 593-609 ◽  
Author(s):  
Mahdi Nakhavali ◽  
Pierre Friedlingstein ◽  
Ronny Lauerwald ◽  
Jing Tang ◽  
Sarah Chadburn ◽  
...  

Abstract. Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.


Sign in / Sign up

Export Citation Format

Share Document