Inheritance of supernumerary spikelets in a tetraploid wheat cross

Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 509-514 ◽  
Author(s):  
D. L. Klindworth ◽  
N. D. Williams ◽  
L. R. Joppa

The supernumerary spikelet (SS) trait of durum wheat (Triticum turgidum L.), including the four-rowed and ramified spike types, is characterized by an increased number of spikelets per spike. To determine the inheritance of this trait, the tetraploid ramified spike cultivar PI349056 was crossed reciprocally to normal-spike 'Langdon' durum, and the F1 was backcrossed to each parent. The F1, F2, F3, BC1F1, and BC1F2 were classified for SS expression. Additionally, PI349056 was crossed to the 'Langdon' 2D(2A) disomic substitution line to study linkage of SS genes. The SS trait was recessive to normal spike, and both four-rowed spike and ramified spike progeny were observed in the segregating generations. Segregation in F3 and BC1F2 families indicated that SS in PI349056 was quantitatively inherited, controlled by a major recessive gene and numerous minor genes. Normal-spiked plants selected in families homozygous for the major gene indicated that the major gene did not produce SS when the minor genes were absent. Selection of normal-spiked plants in the F3 and F4 of 'Langdon' 2D(2A) disomic substitution/PI349056 indicated that the minor SS genes were not linked to the major gene on chromosome 2A.Key words: Triticum, branched spike, ramified spike, four-rowed spike.

Genome ◽  
1988 ◽  
Vol 30 (2) ◽  
pp. 229-233 ◽  
Author(s):  
C. F. Konzak ◽  
L. R. Joppa

The durum wheat (Triticum turgidum L. var. durum) cultivar 'Vic' was treated with the chemical mutagen N-methyl-N′-nitrosourea and among the M2 progeny a mutant with "chocolate chaff" (designated cc) was identified. Genetic analyses indicated that chocolate chaff is due to a single recessive gene mutation. The penetrance of the gene for chocolate chaff was environmentally influenced and varied from dark blotches on the glumes to complete coloration of culms as well as spikes. To determine the chromosomal location of the gene, the mutant was crossed with a set of 'Langdon' durum disomic substitution lines in which each of the 14 A- and B-genome chromosomes of durum wheat were replaced by their respective D-genome homoeologues. The segregation of cc was normal in all of the crosses except for those with the 7D(7A) and 7D(7B) lines. Cytogenetic analysis indicated that the gene was located on chromosome 7B, and that chromosome 7D has a gene that prevents the expression of cc when present in one or more copies. It was shown that the 'Langdon' D-genome disomic substitution lines can be used to determine the chromosomal location of genes in tetraploid wheat.Key words: Triticum turgidum, aneuploid, chromosome substitution, monosomic, cytogenetics.


1995 ◽  
Vol 75 (1) ◽  
pp. 55-60 ◽  
Author(s):  
T. N. McCaig ◽  
J. M. Clarke

Canadian durum wheat (Triticum turgidum L.) production is centred in the Brown and Dark Brown soil zones, areas of limited rainfall. For more than 50 yr, lines have been evaluated in the multi-location Durum Cooperative Test. Data from this test, over the period 1947–1992, were analyzed with the objectives of determining the advances that have been made within the Canada Western Amber Durum (CWAD) wheat class and comparing yield-related variables of recently registered cultivars with those of earlier cultivars. Canadian-developed cultivars have increased yields about 0.81% yr−1 relative to Hercules, or approximately 22.6 kg ha−1 yr−1. As kernel weight has remained unchanged, the genetic yield increases have resulted entirely from an increase in the number of kernels produced. Because kernel number is determined prior to, and during, anthesis, further yield increases may depend upon selection of genotypes that produce higher numbers of kernels, thereby increasing sink demand. While plant height and hectolitre weight have been decreasing over time, neither variable was significantly (P < 0.05) correlated with the yield increases that have taken place over the 29-yr period. The selection pressure toward shorter cultivars may have involved other agronomic advantages, such as decreased lodging. Days to maturity did not change significantly over time and was not correlated with yield. Key words:Triticum turgidum, kernel number, kernel weight, height, hectolitre weight


2004 ◽  
Vol 31 (11) ◽  
pp. 1105 ◽  
Author(s):  
Megan P. Lindsay ◽  
Evans S. Lagudah ◽  
Ray A. Hare ◽  
Rana Munns

Salinity affects durum wheat [Triticum turgidum L. ssp. durum (Desf.)] more than it affects bread wheat (Triticum aestivum L.), and results in lower yield for durum wheat cultivars grown on salt-affected soils. A novel source of salt tolerance in the form of a sodium exclusion trait, identified previously in a screen of tetraploid wheat germplasm, was mapped using a QTL approach. The trait, measured as low Na+ concentration in the leaf blade, was mapped on a population derived from a cross between the low Na+ landrace and the cultivar Tamaroi. The use of AFLP, RFLP and microsatellite markers identified a locus, named Nax1 (Na exclusion), on chromosome 2AL, which accounted for approximately 38% of the phenotypic variation in the mapping population. Markers linked to the Nax1 locus also associated closely with low Na+ progeny in a genetically unrelated population. A microsatellite marker closely linked to the Nax1 locus was validated in genetically diverse backgrounds, and proven to be useful for marker-assisted selection in a durum wheat breeding program.


Genome ◽  
2012 ◽  
Vol 55 (12) ◽  
pp. 853-864 ◽  
Author(s):  
Yuefeng Ruan ◽  
André Comeau ◽  
François Langevin ◽  
Pierre Hucl ◽  
John M. Clarke ◽  
...  

Most tetraploid durum wheat (Triticum turgidum L var. durum) cultivars are susceptible to Fusarium head blight (FHB). This study reports novel quantitative trait loci (QTL) associated with FHB resistance. A backcross recombinant inbred line (BCRIL) population was developed from the cross BGRC3487/2*DT735, and 160 lines were evaluated for resistance to Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein. Petch) in field trials over 3 years (2008–2010) and to a F. graminearum 3-acetyl-deoxynivalenol (3-ADON) chemotype in greenhouse trials. The population was genotyped with 948 polymorphic loci using DArT and microsatellite markers. Eleven QTL were associated with FHB resistance under field conditions on chromosomes 2A, 3B, 5A, 5B, 7A, and 7B. Two of these, QFhb.usw-3B from BGRC3487 and QFhb.usw-7A2, were consistently detected over environments. The QFhb.usw-3B QTL was in a similar position to a resistance QTL in hexaploid wheat. The combination of the two QTL reduced field index by 53.5%–86.2%. Two QTL for resistance to the 3-ADON chemotype were detected on chromosomes 1B and 4B. Both BGRC3487 and DT735 could provide new sources of FHB resistance and the combination of QTL reported here could be valuable tools in breeding FHB-resistant durum wheat.


Genome ◽  
2006 ◽  
Vol 49 (12) ◽  
pp. 1586-1593 ◽  
Author(s):  
Daryl J. Somers ◽  
George Fedak ◽  
John Clarke ◽  
Wenguang Cao

Triticum turgidum L var. durum is known to be particularly susceptible to infection by Fusarium graminearum, the causal agent for Fusarium head blight (FHB), which results in severe yield losses and grain contaminated with mycotoxins. This research was aimed at identifying FHB resistance in tetraploid wheat and mapping the location of FHB resistance genes. A tetraploid cross of durum wheat (‘Strongfield’) × Triticum carthlicum (‘Blackbird’) was used to generate a doubled-haploid (DH) population. This population was evaluated for type II resistance to F. graminearum in replicated greenhouse trials, in which heads were innoculated and the percent of infected spikelets was determined 21 days later. The population was also genotyped with microsatellite markers to construct a map of 424 loci, covering 2 052 cM. The FHB reaction and genotypic data were used to identify FHB resistance quantitative trait loci (QTLs). It was determined that 2 intervals on chromosomes 2BL and 6BS controlled FHB resistance in this tetraploid cross. The FHB resistance allele on chromosome 2BL (r2 = 0.26, logarithm of odds (LOD) = 8.5) was derived from ‘Strongfield’, and the FHB resistance allele on chromosome 6BS (r2 = 0.23, LOD = 6.6) was derived from ‘Blackbird’. Two other loci, on chromosomes 5AS and 2AL, were shown to regulate FHB infection and to have an epistatic effect on the FHB resistance QTL on chromosome 6BS. Further, the FHB resistance QTL peak on chromosome 6BS was clearly coincident with the known FHB resistance gene Fhb2, derived from Sumai 3. The results show that FHB resistance can be expressed in durum wheat, and that T. carthlicum and Triticum aestivum likely share a common FHB resistance gene on chromosome 6BS.


2018 ◽  
Author(s):  
Ljiljana Kuzmanović ◽  
Roberto Ruggeri ◽  
Jason A. Able ◽  
Filippo M. Bassi ◽  
Marco Maccaferri ◽  
...  

AbstractIntrogressions of Thinopyrum ponticum 7AgL chromosome segments, spanning 23%, 28% and 40% of the distal end of durum wheat 7AL arm, were previously shown to contain multiple beneficial gene(s)/QTL for yield-related traits, in addition to effective disease resistance (Lr19, Sr25) and quality (Yp) genes. In the present study, durum wheat near isogenic recombinant lines (NIRLs), harbouring each of the three introgressions, were included for the first time in multi-location field trials, to evaluate general and environment-specific effects of the alien chromatin on 26 yield-related traits. The results from nine different trials across contrasting environments of Italy, Morocco and South Australia over four years revealed that the overall impact of 7AgL introgressions into the tetraploid wheat background did not imply, except in one environment, major yield penalty. The comprehensive effect of the three 7AgL segments on individual yield-contributing traits, resulted in significant increases of biomass m−2 (+9%), spike number m−2 (+13%), grain number m−2 (+11%) and spikelet−1 (+8%), but also in a general, significant decrease of grain weight (−8%). When the separate NIRLs were analysed, each of the three 7AgL segments turned out to be associated with variation of specific yield components. The effects of the 40%-long segment proved to be the most stably expressed across environments and involved significant increases of spike and grain number m−2 (13% and 15%, respectively), grain number spike−1 (10%) and spike fertility index (46%), though accompanied by a significant decrease in thousand grain weight (−23%). In spite of this trade-off between grain number and grain weight, their interplay was such that in four trials, including dryer environments, a grain yield advantage was observed. This evidence, and comparison with the two other NIRLs, substantiates the hypothesized existence of major gene(s)/QTL for grain number in the most proximal 28-40% 7AgL region, exclusive to the 40%-long 7AgL introgression. The present study represents an important validation of the use of chromosomally engineered genetic stocks for durum wheat improvement, targeting not only disease resistance and quality traits but also relevant yield components.


2020 ◽  
Author(s):  
Romina Beleggia ◽  
Nooshin Omranian ◽  
Yan Holtz ◽  
Tania Gioia ◽  
Fabio Fiorani ◽  
...  

SummaryMounting evidence indicates the key role of Nitrogen (N) on diverse processes in plant, including not only yield but also development and defense. Using a combined transcriptomics and metabolomics approach, we studied the response of seedlings to N starvation of two different tetraploid wheat genotypes from the two main domesticated subspecies, emmer (Triticum turgidum ssp. dicoccum) and durum wheat (Triticum turgidum ssp. durum). We found that durum wheat exhibits broader and stronger response in comparison to emmer as evidenced by the analysis of the differential expression pattern of both genes and metabolites and gene enrichment analysis. Emmer and durum wheat showed major differences in the responses to N starvation for transcription factor families. While emmer showed differential reduction in the levels of primary metabolites to N starvation, durum wheat exhibited increased levels of most metabolites, including GABA as an indicator of metabolic imbalance. The correlation-based networks including the differentially expressed genes and metabolites revealed tighter regulation of metabolism in durum wheat in comparison to emmer, as evidenced by the larger number of significant correlations. We also found that glutamate and GABA had highest values of centrality in the metabolic correlation network, suggesting their critical role in the genotype-specific response to N starvation of emmer and durum wheat, respectively. Moreover, this finding indicates that there might be contrasting strategies associated to GABA and Glutamate signaling modulating shoot vs root growth in the two different wheat subspecies.


2020 ◽  
Vol 11 ◽  
Author(s):  
Elisabetta Mazzucotelli ◽  
Giuseppe Sciara ◽  
Anna M. Mastrangelo ◽  
Francesca Desiderio ◽  
Steven S. Xu ◽  
...  

Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94–97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970–2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (Fst) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.


Genome ◽  
1988 ◽  
Vol 30 (6) ◽  
pp. 854-856
Author(s):  
D. R. Knott

The inheritance of stem rust (Puccinia graminis f. sp. tritici Eriks. and Henn.) resistance was studied in 'K253', a hexaploid wheat (Triticum aestivum L.) with resistance derived from a tetraploid wheat (T. turgidum L.). The studies indicated that 'K253' carries one dominant gene for good resistance to races 29 and 56 (probably Sr9e) and one recessive gene for moderate resistance to race 15B-1. In addition, some plants apparently carry a recessive gene for moderate resistance to race 56. Four different types of hexaploid near-isogenic lines were produced. One carried Sr9e and another the gene for moderate resistance to race 15B-1. Two carried genes that had not been identified in the genetic studies, including one that was apparently not derived from K253.Key words: stem rust resistance, Puccinia graminis tritici, wheat, Triticum aestivum, Triticum turgidum.


Sign in / Sign up

Export Citation Format

Share Document