scholarly journals Structure and expression analysis of genes encoding ADP-glucose pyrophosphorylase large subunit in wheat and its relatives

Genome ◽  
2016 ◽  
Vol 59 (7) ◽  
pp. 501-507 ◽  
Author(s):  
Xiao-Wei Zhang ◽  
Si-Yu Li ◽  
Ling-Ling Zhang ◽  
Qiang Yang ◽  
Qian-Tao Jiang ◽  
...  

ADP-glucose pyrophosphorylase (AGP), which consists of two large subunits (AGP-L) and two small subunits (AGP-S), controls the rate-limiting step in the starch biosynthetic pathway. In this study, a full-length open reading frame (ORF) of AGP-L gene (named as Agp2) in wheat and a series of Agp2 gene sequences in wheat relatives were isolated. The coding region of Agp2 contained 15 exons and 14 introns including a full-length ORF of 1566 nucleotides, and the deduced protein contained 522 amino acids (57.8 kDa). Generally, the phylogenetic tree of Agp2 indicated that sequences from A- and D-genome donor species were most similar to each other and sequences from B-genome donor species contained more variation. Starch accumulation and Agp2 expression in wheat grains reached their peak at 21 and 15 days post anthesis (DPA), respectively.

1999 ◽  
Vol 19 (1) ◽  
pp. 873-881 ◽  
Author(s):  
O. N. Danilevskaya ◽  
K. L. Traverse ◽  
N. C. Hogan ◽  
P. G. DeBaryshe ◽  
M. L. Pardue

ABSTRACT The transposable elements HeT-A and TARTconstitute the telomeres of Drosophila chromosomes. Both are non-long terminal repeat (LTR) retrotransposons, sharing the remarkable property of transposing only to chromosome ends. In addition, strong sequence similarity of their gag proteins indicates that these coding regions share a common ancestor. These findings led to the assumption that HeT-A andTART are closely related. However, we now find that these elements produce quite different sets of transcripts. HeT-Aproduces only sense-strand transcripts of the full-length element, whereas TART produces both sense and antisense full-length RNAs, with antisense transcripts in more than 10-fold excess over sense RNA. In addition, features of TART sequence organization resemble those of a subclass of non-LTR elements characterized by unequal terminal repeats. Thus, the ancestral gag sequence appears to have become incorporated in two different types of elements, possibly with different functions in the telomere. HeT-Atranscripts are found in both nuclear and cytoplasmic cell fractions, consistent with roles as both mRNA and transposition template. In contrast, both sense and antisense TART transcripts are almost entirely concentrated in nuclear fractions. Also,TART open reading frame 2 probes detect a cytoplasmic mRNA for reverse transcriptase (RT), with no similarity to TARTsequence 5′ or 3′ of the RT coding region. This RNA could be a processed TART transcript or the product of a “free-standing” RT gene. Either origin would be novel. The distinctive transcription patterns of both HeT-A andTART are conserved in Drosophila yakuba, despite significant sequence divergence. The conservation argues that these sets of transcripts are important to the function(s) ofHeT-A and TART.


1999 ◽  
Vol 54 (5-6) ◽  
pp. 353-358 ◽  
Author(s):  
Leszek A. Kleszkowski ◽  
Lubomir N. Sokolov ◽  
Cheng Luo ◽  
Per Villand

Abstract A cDNA, A p L 1a , corresponding to a homologue of the large subunit of ADP-glucose pyrophosphorylase (AG Pase), has been isolated/characterised by screening a cDNA library prepared from leaves of Arabidopsis thaliana, followed by rapid amplification of cDNA 3′-ends (3′-RACE). Within the 1685 nucleotide-long sequence (excluding polyA tail), an open reading frame encodes a protein of 522 amino acids (aa), with a calculated molecular weight of 57.7 kDa. The derived aa sequence does not contain any discernible transit peptide cleavage site motif, similarly to two other recently sequenced full-length Arabidopsis homo-logues for AGPase, and shows ca. 58–78 % identity to homologous proteins from other plants/tissues. The corresponding gene was found (rosette and stem leaves, stems, flowers and fruits), consistent with its critical role in starch synthesis in


2007 ◽  
Vol 3 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Qi-Jiao Chen ◽  
Lian-Quan Zhang ◽  
You-Wei Yang ◽  
Zhong-Wei Yuan ◽  
Zhi-Guo Xiang ◽  
...  

2018 ◽  
Vol 73 (5-6) ◽  
pp. 191-197 ◽  
Author(s):  
Dongmei Li ◽  
Zhimin Yang ◽  
Xinchun Liu ◽  
Zhen Song ◽  
Zongyun Feng ◽  
...  

Abstract As an important plateau cereal crop, hulless barley is the principal food for the Tibetan people in China. ADP-glucose pyrophosphorylase (AGPase) is considered as the key enzyme for starch biosynthesis in plants. In this study, cDNAs encoding the small subunit (SSU I) and large subunit (LSU I) of AGPase were isolated from hulless barley. The results showed that SSU I and LSU I were 1438 and 1786 bp in length with a complete open reading frame (ORF) of 1419 and 1572 bp. The ORF-encoded polypeptides of 472 and 523 amino acids were having calculated molecular masses of 52.01 and 58.23 kDa, and the pI values were 5.59 and 6.30. In addition, phylogenetic analysis showed that SSU I and LSU I had the same phylogenetic trends with some species. Furthermore, expression levels in different growth periods and tissues of two hulless barley varieties were analyzed by quantitative reverse transcription-polymerase chain reaction. Gene expression levels of SSU I and LSU I were consistent with the total starch accumulation rate in endosperm. In conclusion, our data confirmed that SSU I and LSU I played an important role in hulless barley starch synthesis.


Genetics ◽  
1981 ◽  
Vol 99 (3-4) ◽  
pp. 495-512
Author(s):  
U Kushnir ◽  
G M Halloran

ABSTRACT A number of lines of evidence are advanced for the candidacy of Aegilops sharonensisEig as the donor of the B genome of wheat. The cytoplasm of Ae. shuronensis iscompatible with tetraploid wheat Triticum turgidum dicoccoides,as evidenced bythe high level of chromosome pairing and fertility of the amphiploid Ae. sharonensisx T. turgidum dicoccoides. Ae. sharonensischromosomes exhibit high levels of pairing with those of the B genome of wheat in hybrids with Ph-deficient hexaploid wheat and low levels of homoeologous pairing with T. monocmcumchromosomes.——The amphidiploid between Ae. sharonensisand T. monococcumis very similar to T. turgidum dicoccoidesin spike, spikelet and grain morphology. The karyotype of Ae. sharonensisresembles more closely that of extrapolated Bgenome karyotypes of wheat than do the karyotypes of other proposed B-genome donor species of Aegilops. Because of distinctiveness in cytological aftinity and karyotype morphology between Ae. sharonensisand Ae. longissima,a separate genome symbol Sshis proposed for the former species.


Genome ◽  
1988 ◽  
Vol 30 (4) ◽  
pp. 576-581 ◽  
Author(s):  
K. Kerby ◽  
J. Kuspira ◽  
B. L. Jones

To determine whether the Triticum urartu genome is more closely related to the A or B genome of the polyploid wheats, the amino acid sequence of its purothionin was compared to the amino acid sequences of the purothionins in Triticum monococcum, Triticum turgidum, and Triticum aestivum. The residue sequence of the purothionin from T. urartu differs by five and six amino acid substitutions respectively from the α1 and α2 forms coded for by genes in the B and D genomes, and is identical to the β form specified by a gene in the A genome. Therefore, the T. urartu purothionin is either coded by a gene in the A genome or a chromosome set highly homologous to it. The results demonstrate that at least a portion of the T. urartu and T. monococcum genomes is homologous and probably identical. A variety of other studies have also shown that T. urartu is very closely related to T. monococcum and, in all likelihood, also possesses the A genome. Therefore, it could be argued that either T. urartu and T. monococcum are the same species or that T. urartu rather than T. monococcum is the source of the A genome in T. turgidum and T. aestivum. Except for Johnson's results, our data and that of others suggest a revised origin of polyploid wheats. Specifically, the list of six putative B genome donor species is reduced to five, all members of the Sitopsis section of the genus Aegilops.Key words: Triticum monococcum, Triticum urartu, polyploid wheats, genomes A and B, purothionins.


1972 ◽  
Vol 14 (3) ◽  
pp. 703-712 ◽  
Author(s):  
H. C. Dass

Thin-layer chromatography was used to assess the phylogenetic affinities in Triticinae. Leaf phenolics of Aegilops speltoides, Ae. bicornis, Ae. squarrosa, Triticum monococcum, T. dicoccoides, T. dicoccum and T. aestivum ssp. spelta were screened on cellulose coated plates. The chromatographic data were analysed statistically and a similarity index (biochemical distance) calculated. This index corresponded most closely with conventional concepts of affinities. T. dicoccoides and T. dicoccum were found to be closer to Ae. bicornis than to Ae. speltoides which suggests that Ae. bicornis is more probably the B genome donor. The contribution of the D genome by Ae. squarrosa was further confirmed. Correlation between the two tetraploids T. dicoccoides and T. dicoccum as well as with T. aestivum was high. Among the Aegilops species studied, Ae. speltoides most closely resembled T. monococcum. Low affinity in terms of the biochemical distance of T. monococcum with emmer wheats and T. aestivum throws doubt upon its direct contribution of the A genome.


2000 ◽  
Vol 48 (3) ◽  
pp. 301-313 ◽  
Author(s):  
A. F. Bálint ◽  
G. Kovács ◽  
J. Sutka

There is still disagreement among scientists on the exact origin of common wheat (Triticum aestivum ssp. aestivum), one of the most important crops in the world. The first step in the development of the hexaploid aestivum group (ABD) may have been hybridisation between T. urartu (A), as pollinator, and a species related to the Sitopsis section of the Aegilops genus (S) as cytoplasm donor, leading to the creation of the tetraploid species T. turgidum ssp. dicoccoides (AB). The following step may have involved hybridisation between T. turgidum ssp. dicoccon (AB genome, cytoplasm donor), a descendant of T. turgidum ssp. dicoccoides, and Ae. tauschii (D genome, pollinator), resulting in the hexaploid species T. aestivum ssp. spelta (ABD) or some other hulled type. This form may have given rise to naked types, including T. aestivum ssp. aestivum (ABD). The ancestors of the tetraploid T. timopheevii (AG) may have been the diploid T. urartu (A genome, pollinator) and Ae. speltoides (S genome, cytoplasm donor). Species in the timopheevii group developed later than those in the turgidum group, as confirmed by the fact that the G genome is practically identical to the S genome of Ae. speltoides, while the more ancient B genome has undergone divergent evolution. Hybridisation between T. timopheevii (AG, cytoplasm donor) and T. monococcum (A m, pollinator) may have resulted in the species T. zhukovskyi (AGA m). Research into the relationships between the various species is of assistance in compiling the taxonomy of wheat and in avoiding misunderstandings arising from the fact that some species are known by two or more synonymous names.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 2007-2023 ◽  
Author(s):  
Marion S Röder ◽  
Victor Korzun ◽  
Katja Wendehake ◽  
Jens Plaschke ◽  
Marie-Hélène Tixier ◽  
...  

Abstract Hexaploid bread wheat (Triticum aestivum L. em. Thell) is one of the world's most important crop plants and displays a very low level of intraspecific polymorphism. We report the development of highly polymorphic microsatellite markers using procedures optimized for the large wheat genome. The isolation of microsatellite-containing clones from hypomethylated regions of the wheat genome increased the proportion of useful markers almost twofold. The majority (80%) of primer sets developed are genome-specific and detect only a single locus in one of the three genomes of bread wheat (A, B, or D). Only 20% of the markers detect more than one locus. A total of 279 loci amplified by 230 primer sets were placed onto a genetic framework map composed of RFLPs previously mapped in the reference population of the International Triticeae Mapping Initiative (ITMI) Opata 85 × W7984. Sixty-five microsatellites were mapped at a LOD >2.5, and 214 microsatellites were assigned to the most likely intervals. Ninety-three loci were mapped to the A genome, 115 to the B genome, and 71 to the D genome. The markers are randomly distributed along the linkage map, with clustering in several centromeric regions.


2007 ◽  
Vol 88 (2) ◽  
pp. 621-630 ◽  
Author(s):  
S. Maan ◽  
N. S. Maan ◽  
A. R. Samuel ◽  
S. Rao ◽  
H. Attoui ◽  
...  

The outer capsid protein VP2 of Bluetongue virus (BTV) is a target for the protective immune response generated by the mammalian host. VP2 contains the majority of epitopes that are recognized by neutralizing antibodies and is therefore also the primary determinant of BTV serotype. Full-length cDNA copies of genome segment 2 (Seg-2, which encodes VP2) from the reference strains of each of the 24 BTV serotypes were synthesized, cloned and sequenced. This represents the first complete set of full-length BTV VP2 genes (from the 24 serotypes) that has been analysed. Each Seg-2 has a single open reading frame, with short inverted repeats adjacent to conserved terminal hexanucleotide sequences. These data demonstrated overall inter-serotype variations in Seg-2 of 29 % (BTV-8 and BTV-18) to 59 % (BTV-16 and BTV-22), while the deduced amino acid sequence of VP2 varied from 22.4 % (BTV-4 and BTV-20) to 73 % (BTV-6 and BTV-22). Ten distinct Seg-2 lineages (nucleotypes) were detected, with greatest sequence similarities between those serotypes that had previously been reported as serologically ‘related’. Fewer similarities were observed between different serotypes in regions of VP2 that have been reported as antigenically important, suggesting that they may play a role in the neutralizing antibody response. The data presented form an initial basis for BTV serotype identification by sequence analyses and comparison of Seg-2, and for development of molecular diagnostic assays for individual BTV serotypes (by RT-PCR).


Sign in / Sign up

Export Citation Format

Share Document