Genome-Wide Characterization of PDI Gene Family in Medicago truncatula and their Roles in Response to ER stress

Genome ◽  
2020 ◽  
Author(s):  
Zhe Meng ◽  
Yuwei Zhao ◽  
Lijie Liu ◽  
Xihua Du

Protein disulfide isomerases (PDIs) are pivotal protein folding catalysts in the endoplasmic reticulum (ER) through formation of disulfide bond, isomerization, and inhibition of misfolded protein aggregation. When protein folding capacity is overwhelmed by the demands during transitions between growth phases or under environmental changes, the accumulation of unfolded or misfolded proteins in the ER triggers ER stress. However, little is known about PDI gene family in the model legume, Medicago truncatula, especially the responses to ER stress. Therefore, we identified 17 putative PDIs from the genome of M. truncatula and presented their gene and protein structures, phylogenetic relationships, chromosomal distributions, and synteny analysis with the orthologs in other four eudicot species inculding A. thaliana, G. max, B. rapa, and V. vinifera. Moreover, expression profiles derived from transcriptome data showed distinct expression patterns of MtPDI genes among plant organs, while real-time quantitative PCR analysis and data from the proteome revealed the potential roles of MtPDIs in response to ER stress. Our study provides a foundation for further investigations of the biological roles of PDIs in Medicago, especially their roles in response to ER stress.

2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Yuxin Pan ◽  
Jinpeng Wang ◽  
Zhenyi Wang ◽  
Hengwei Liu ◽  
Lan Zhang ◽  
...  

Abstract Background: UDP-glucuronate decarboxylase (UXS) is an enzyme in plants and participates in cell wall noncellulose. Previous research suggested that cotton GhUXS gene regulated the conversion of non-cellulosic polysaccharides and modulates their composition in plant cell walls, showing its possible cellular function determining the quality of cotton fibers. Here, we performed evolutionary, phylogenetic, and expressional analysis of UXS genes from cottons and other selected plants. Results: By exploring the sequenced cotton genomes, we identified 10, 10, 18, and 20 UXSs genes in Gossypium raimondii , Gossypium arboretum , Gossypium hirsutum and Gossypium barbadense , and retrieved their homologs from other representative plants, including 5 dicots, 1 monocot, 5 green alga, 1 moss, and 1 lycophyte. Phylogenetic analysis suggested that UXS genes could be divided into four subgroups and members within each subgroup shared similar exon-intron structures, motif and subcellular location. Notably, gene colinearity information indicates 100% constructed trees to have aberrant topology, and helps determine and use corrected phylogeny. In spite of conservative nature of UXS, during the evolution of Gossypium , UXS genes were subjected to significant positive selection on key evolutionary nodes. Expression profiles derived from RNA-seq data showed distinct expression patterns of GhUXS genes in various tissues and different development. Most of GhUXS gene expressed highly at 10, 20 and 25 DPA (day post anthesis) of fibers. Real-time quantitative PCR analysis GhUXS genes expressed highly at 20 DPA or 25 DPA. Conclusions: UXS is relatively conserved in plants and significant positive selection affects cotton UXS evolution. The comparative genome-wide identification and expression profiling would lay an important foundation to understanding the biological functions of UXS gene family in cotton species and other plants.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 315
Author(s):  
Hanzeng Wang ◽  
Xue Leng ◽  
Xuemei Xu ◽  
Chenghao Li

The TIFY gene family is specific to land plants, exerting immense influence on plant growth and development as well as responses to biotic and abiotic stresses. Here, we identify 25 TIFY genes in the poplar (Populus trichocarpa) genome. Phylogenetic tree analysis revealed these PtrTIFY genes were divided into four subfamilies within two groups. Promoter cis-element analysis indicated most PtrTIFY genes possess stress- and phytohormone-related cis-elements. Quantitative real-time reverse transcription polymerase chain reaction (qRT–PCR) analysis showed that PtrTIFY genes displayed different expression patterns in roots under abscisic acid, methyl jasmonate, and salicylic acid treatments, and drought, heat, and cold stresses. The protein interaction network indicated that members of the PtrTIFY family may interact with COI1, MYC2/3, and NINJA. Our results provide important information and new insights into the evolution and functions of TIFY genes in P. trichocarpa.


2020 ◽  
Vol 21 (19) ◽  
pp. 7180
Author(s):  
Hongfeng Wang ◽  
Hongjiao Jiang ◽  
Yiteng Xu ◽  
Yan Wang ◽  
Lin Zhu ◽  
...  

Gibberellins (GAs), a class of phytohormones, act as an essential natural regulator of plant growth and development. Many studies have shown that GA is related to rhizobial infection and nodule organogenesis in legume species. However, thus far, GA metabolism and signaling components are largely unknown in the model legume Medicago truncatula. In this study, a genome-wide analysis of GA metabolism and signaling genes was carried out. In total 29 components, including 8 MtGA20ox genes, 2 MtGA3ox genes, 13 MtGA2ox genes, 3 MtGID1 genes, and 3 MtDELLA genes were identified in M. truncatula genome. Expression profiles revealed that most members of MtGAox, MtGID1, and MtDELLA showed tissue-specific expression patterns. In addition, the GA biosynthesis and deactivation genes displayed a feedback regulation on GA treatment, respectively. Yeast two-hybrid assays showed that all the three MtGID1s interacted with MtDELLA1 and MtDELLA2, suggesting that the MtGID1s are functional GA receptors. More importantly, M. truncatula exhibited increased plant height and biomass by ectopic expression of the MtGA20ox1, suggesting that enhanced GA response has the potential for forage improvement.


2019 ◽  
Author(s):  
Lanjie Zhao ◽  
Youjun Lu ◽  
Wei Chen ◽  
Jinbo Yao ◽  
Yan Li ◽  
...  

Abstract Background: Members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED ( AHL ) family are involved in various plant biological processes via protein-DNA and protein-protein interaction. However, no the systematic identification and analysis of AHL gene family have been reported in cotton. Results: To investigate the potential functions of AHLs in cotton, genome-wide identification, expressions and structure analysis of the AHL gene family were performed in this study. 48, 51 and 99 AHL genes were identified from the G.raimondii, G.arboreum and G.hirsutum genome, respectively. Phylogenetic analysis revealed that the AHLs in cotton evolved into 2 clades, Clade-A with 4-5 introns and Clade-B with intronless (excluding AHL 20-2). Based on the composition of the AT-hook motif(s) and PPC/DUF 296 domain, AHL proteins were classified into three types (Type-I/-II/-III), with Type-I AHLs forming Clade-B, and the other two types together diversifying in Clade-A. The detection of synteny and collinearity showed that the AHLs expanded with the WGD in cotton, and the sequence structure of AHL20-2 showed the tendency of increasing intron in three different Gossypium spp . The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates of orthologous gene pairs revealed that the AHL genes of G.hirsutum had undergone through various selection pressures, purifying selection mainly in A-subgenome and positive selection mainly in D-subgenome. Examination of their expression patterns showed most of AHLs of Clade-B expressed predominantly in stem, while those of Clade-A in ovules, suggesting that the AHLs within each clade shared similar expression patterns with each other. qRT-PCR analysis further confirmed that some GhAHLs higher expression in stems and ovules. Conclusion: In this study, 48, 51 and 99 AHL genes were identified from three cotton genomes respectively. AHLs in cotton were classified into two clades by phylogenetic relationship and three type based on the composition of motif and domain. The AHLs expanded with segmental duplication, not tandem duplication. The expression profiles of GhAHLs revealed abundant differences in expression levels in various tissues and at different stages of ovules development. Our study provided significant insights into the potential functions of AHLs in regulating the growth and development in cotton.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 215 ◽  
Author(s):  
Qingnan Hao ◽  
Ling Zhang ◽  
Yanyan Yang ◽  
Zhihui Shan ◽  
Xin-an Zhou

WUSCHEL-related homeobox (WOX) is a family of transcription factors that are unique to plants and is characterized by the presence of a homeodomain. The WOX transcription factor plays an important role in regulating plant growth and development and the response to abiotic stress. Soybean is one of the most important oil crops worldwide. In this study, based on the available genome data of soybean, the WOX gene family was identified by bioinformatics analysis. The chromosome distribution, gene and protein structures, phylogenetic relationship and gene expression patterns of this family were comprehensively compared. The results showed that a total of 33 putative WOX genes in the soybean genome were found and then designated as GmWOX1- GmWOX33, which were distributed across 19 chromosomes except chromosome 16. Multiple sequence analysis of the GmWOX gene family revealed a highly conserved homeodomain. Phylogenetic tree analysis showed that 33 WOX genes could be divided into three major clades (modern/WUS, intermediate and ancient) in soybean. Of these 33 WOX genes, some showed differential expression patterns in the tested tissues (leaves, pods, unopen and open flowers, nodules, seed, roots, root hairs, stems, shoot apical meristems and shoot tips). In addition, the expression profile and qRT-PCR analysis showed that most of the GmWOX genes responded to different abiotic stress treatments (cold and drought). According to the expression pattern of GmWOX genes in the high regeneration capacity soybean material P3, overexpression of GmWOX18 was selected for function analysis. The overexpression of GmWOX18 increased the regeneration ability of clustered buds. The results will provide valuable information for further studies on the roles of WOX genes in regulating soybean growth, development and responses to abiotic stress, as well as a basis for the functional identification and analysis of WOX genes in soybean.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple ( Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members have been identified to play vital roles in flowering. However, little information was available about the 14-3-3 members in apple. Results: In the current study, we identified eighteen 14-3-3 gene family members from apple genome database, designated MdGF14a to MdGF14r . The isoforms possess a conserved core region composed of nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3s classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative reverse-transcription PCR (qRT-PCR) analysis exhibited diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormones treatments during floral transition phase. Four Md14-3-3 isoforms ( MdGF14a , MdGF14d , MdGF14i and MdGF14j ) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus. Conclusion: We comprehensively identified Md14-3-3s family in apple. Some Md14-3-3 genes are predominantly expressed during apple floral transition stage, and may participate in regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s for floral transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Muhammad Mobeen Tahir ◽  
Huiru Yang ◽  
...  

Abstract Background: Apple ( Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members have been identified to play vital roles in flowering. However, little information was available about the 14-3-3 members in apple. Results: In the current study, we identified eighteen 14-3-3 gene family members from apple genome database, designated MdGF14a to MdGF14r , 17 of them are transcribed. The isoforms possess a conserved core region composed of nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3s classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative reverse-transcription PCR (qRT-PCR) analysis exhibited diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormones treatments during floral transition phase. Four Md14-3-3 isoforms ( MdGF14a , MdGF14d , MdGF14i and MdGF14j ) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Conclusion: We comprehensively identified Md14-3-3s family in apple. Some Md14-3-3 genes are predominantly expressed during apple flowering transition stage, and may participate in regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s for flower transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


Sign in / Sign up

Export Citation Format

Share Document