Structural performance of scrap tire culverts

2001 ◽  
Vol 28 (2) ◽  
pp. 179-189 ◽  
Author(s):  
Shiping Yang ◽  
Bruce H Kjartanson ◽  
Robert A Lohnes

Culverts constructed of whole truck tires are a cost-effective alternative for draining water from small drainage basins with areas up to several hectares. Truck tire culvert design involves both hydraulic and structural performance considerations. This paper focuses on the structural considerations. Structural performance of truck tire culverts depends on the strength and stiffness of the truck tires and on their interaction with the surrounding backfill soil. The strength and stiffness properties of truck tires were determined by parallel plate testing. Field tests were conducted to evaluate the soil-structure interaction of buried truck tire culverts under a relatively shallow backfill. Responses with well-compacted and uncompacted (dumped) glacial till backfill soil were compared. Drawing on the results of the parallel plate tests and using the buried conduit test results for calibration, the Culvert Analysis and Design (CANDE) program was used to assess the load response of a truck tire culvert for a variety of backfill soils and to develop structural performance-based design guidelines.Key words: scrap tires, culvert, parallel plate test, field testing, CANDE.

Author(s):  
S. K. Srirangam ◽  
K. Anupam ◽  
D. Casey ◽  
X. Liu ◽  
C. Kasbergen ◽  
...  

2017 ◽  
Vol 909 ◽  
pp. 263-268
Author(s):  
Xin Guo ◽  
Wen Li ◽  
Xiong Li Huang ◽  
Dian Gang Zhai

A new-type high performance cold-patch mixture was made from new-type cold-patch asphalt emulsion, which is able to promote the adhesive effect of asphalt and aggregate. This new mixture boasts advantages such as good workability and being free from bad weather like rain and low temperature. During the production, the evaluation method of cold-patch asphalt material was improved by the adoption of rotary viscosity test and paper trail test. Field tests were carried out on some sections of Linchang Expressway. When compared to existing repair materials, the new-type cold-patch mixture showed better repair effect as well as the potential for a wide range of promotion.


1985 ◽  
Vol 58 (4) ◽  
pp. 740-750 ◽  
Author(s):  
D. Barnard ◽  
C. S. L. Baker ◽  
I. R. Wallace

Abstract An 80 NR/20 BR truck tread compound containing a semi-EV cure system and modified with a 6.0 phr level of stearic acid has been shown to exhibit excellent resistance to reversion when compared to a similar compound containing a normal 2.0 phr level of stearic acid. Improvements in the retention of laboratory abrasion resistance, heat generation, and most physical properties have been identified on test pieces subjected to typical truck retread overcure conditions. In highway fleet testing trials of 1100 × 22.5 truck retreads fitted to both third and fourth drive axles of tipper trucks, the modified compound displayed a 42% improvement in treadwear performance over the normal compound in the lower severity third axle positions while performance in the higher severity fourth axle positions was inferior by 20%. In comparison to a 55 SBR/45 BR truck tread, both NR compounds displayed superior wear performance on the fourth axles while some further adjustments of the modified compound are required to match the synthetic compound on the third axles. The reversal of wear performances for all compounds between third and fourth axles is due to the different abrasion mechanisms encountered. Laboratory abrasion rankings do not correlate with wear performances of compounds on the fourth drive axle of trucks, but they do correlate with wear performances on third drive axles. Despite the reversion characteristics of the normal semi-EV compound, no significant adverse effect on treadwear performance was evident at the start of tire life. The low heat generation of the modified compound in laboratory tests is confirmed in actual tire testing. Advantages in rolling resistance characteristics are also evident for the modified compound. Current studies at MRPRA suggest that further modifications of cure system design, in combination with the optimization of NR/BR ratios and mixing methods, will potentially provide NR dominant truck tread compounds which will exhibit superior wear performance in both the higher and lower abrasion severities encountered in heavy-duty truck tire service conditions.


1992 ◽  
Vol 65 (2) ◽  
pp. 444-452 ◽  
Author(s):  
P. S. Pillai ◽  
G. S. Fielding-Russell

Abstract A simple equation for tire rolling resistance in terms of whole-tire hysteresis ratio, tire load, and footprint dimensions has been developed from energetic considerations. The rolling resistances of a number of radial passenger and truck tires have been calculated using the equation, and the calculated values were successfully compared with the measured results. The general applicability of the equation was illustrated by predicting the rolling resistances of a wide range of tires—from an experimental HR78-8 minitire to a full size 11R24.5 truck tire.


1998 ◽  
Vol 1624 (1) ◽  
pp. 214-224 ◽  
Author(s):  
B. M. Phares ◽  
T. J. Wipf ◽  
F. W. Klaiber ◽  
R. A. Lohnes

In this investigation, a testing program was initiated to gain some understanding of the nature of high-density polyethylene (HDPE) as a structural material and as a buried structure. The testing program consisted of a series of parallel plate tests, a sequence of flexural tests, and field tests of buried pipes under varying backfill conditions. Parallel plate tests were conducted in accordance with ASTM D2412. The flexural testing consisted of applying two point loads to simply supported beam specimens. The field tests completed in this investigation were developed to study the response of large-diameter HDPE to concentrated loads under shallow cover. From the testing, it seems that in cases where high longitudinal stresses may be present (concentrated loads with shallow cover, uneven bedding, uplift, etc.) the pipeline designer should consider the longitudinal strength of HDPE pipes in addition to the circumferential and backfill properties. In addition, the designer must realize that when stresses exist in both directions, the Poisson’s ratio effect must be considered. This finding is supported by the longitudinal failure strains measured during the flexural tests and the field tests. In both types of tests, the pipes failed at approximately the same longitudinal strain level, approximately 1,300 microstrain. On the other hand, in the field tests, the pipes never reached the magnitude of strain associated with failure in the laboratory parallel plate tests.


2005 ◽  
Vol 8 (3) ◽  
pp. 231-245 ◽  
Author(s):  
K. F. Chung

This paper presents a number of experimental and theoretical investigations into the structural behaviour of cold-formed steel structures with bolted connections. Firstly, the basic deformation characteristics of bolted fastenings between cold-formed steel strips in lap shear tests is described, and advanced finite element modelling with solid elements as well as contact elements is carried out for comparison. Secondly, the structural behaviour of lapped Z sections with bolted moment connections is reported, and both analytical and numerical predictions on strength and stiffness of lapped Z sections are presented. Finally, the structural performance of double span lapped Z purlins is investigated numerically where the effects of lapped Z sections over internal supports on the internal force distributions along the purlin members are examined. The description is intended to provide both analysis and design methods as well as understandings to structural engineers, enabling them to design and build cold-formed steel structures rationally with improved structural performance.


2013 ◽  
Vol 778 ◽  
pp. 1041-1048 ◽  
Author(s):  
Thomas Tannert ◽  
Jorge M. Branco ◽  
Mariapaola Riggio

The paper reports on the activities of the RILEM technical committee Reinforcement of Timber Elements in Existing Structures. The main objective of the committee is to coordinate the efforts to improve the reinforcement practice of timber structural elements. Recent developments related to structural reinforcements can be grouped into three categories: (i) addition of new structural systems to support the existing structure; (ii) configuration of a composite system; and (iii) incorporation of elements to increase strength and stiffness. The paper specifically deals with research carried out at the Bern University of Applied Sciences Switzerland (BFH), the University of Minho Portugal (UniMinho), and the University of Trento Italy (UNITN). Research at BFH was devoted to improve the structural performance of rounded dovetail joints by means of different reinforcement methods: i) self-tapping screws, ii) adhesive layer, and iii) a combination of self-tapping screws and adhesive layer. Research at UNITN targeted the use of dry connections for timber-to-timber composites, specifically reversible reinforcement techniques aimed at increasing the load-bearing capacity and the bending stiffness of existing timber floors. At UniMinho, double span continuous glulam slabs were strengthened with fibre-reinforced-polymers. All three examples demonstrate the improved structural performance of timber elements after reinforcing them.


2018 ◽  
Vol 221 ◽  
pp. 04008
Author(s):  
S. Wang

The main reducer housing takes over the shaft loads from gear engagement and transmits to other components, such as differential, semiaxle and driving wheels, so the main reducer housing with enough strength and stiffness is very important. Some factors preventing it from failure need to be taken into consideration when design it. To design a main reducer housing with better performance, in this paper, FEA (Finite Element Analysis) is used to analysis the main reducer housing and to find out some big stress regions. Then, some modifications are proposed to eliminate those big stress regions and obtain a reliable main reducer housing. During the analysis process, an annulus model is built and the reaction forces between the differential bearing seats and axle housing are calculated to determine whether they contact with each other. Finally, some design methods and improvements of the original design main reducer housing are proposed. And numerical comparison results of the stress distribution of the original and improved main reducer housing validate the effectiveness of the proposed methods and modifications in this paper. Those stress analysis and modifications in this paper are time-saving and money-saving before mass production.


Author(s):  
Chengwei Zhu ◽  
Jingjing Yan ◽  
Ye Zhuang ◽  
Xueliang Gao ◽  
Qiang Chen ◽  
...  

A novel evaluation method for the rolling resistance characteristics of truck tire is proposed, in which a simplified modal experiment is suggested through a single-point vibration sampling from the tire surface with a polyvinylidene fluoride (PVDF) piezoelectric film. Three truck tires are utilized in the modal experiments, and the half-power bandwidth method is employed to identify the damping characteristics of the three tires. The damping characteristics of the tires are ranked by their values. These values are compared with their corresponding rolling resistance coefficients to manifest their correlative relationship. The experimental results, which are obtained from the modal experiment and the rolling resistance test, indicate that the modal parameters and the half-power bandwidth of the tire are exactly correlated to the rolling resistance coefficients. Furthermore, the damping ratios of the tires are correlated well with the rolling resistance coefficients among the tires. Overall, the proposed evaluation method could effectively evaluate the rolling resistance characteristics of the tire, which enable it to be a simple and economical alternative over the conventional tire rolling resistance experiments.


Sign in / Sign up

Export Citation Format

Share Document