Analysis and Application of New-Type High Performance Cold-Patch Mixture for Pavement

2017 ◽  
Vol 909 ◽  
pp. 263-268
Author(s):  
Xin Guo ◽  
Wen Li ◽  
Xiong Li Huang ◽  
Dian Gang Zhai

A new-type high performance cold-patch mixture was made from new-type cold-patch asphalt emulsion, which is able to promote the adhesive effect of asphalt and aggregate. This new mixture boasts advantages such as good workability and being free from bad weather like rain and low temperature. During the production, the evaluation method of cold-patch asphalt material was improved by the adoption of rotary viscosity test and paper trail test. Field tests were carried out on some sections of Linchang Expressway. When compared to existing repair materials, the new-type cold-patch mixture showed better repair effect as well as the potential for a wide range of promotion.

2020 ◽  
Vol 3 (01) ◽  
pp. 49-54 ◽  
Author(s):  
Alisha Saanvi ◽  
Ringo Krishnan ◽  
Amoli Hassan ◽  
Rmesh K. Gupta*©

In recent years have seen a surge of increased interest in the exfoliation of boron nitride (h-BN) due to its exciting electrical, thermal, photonics mechanical properties and sensing. Several approach to have emerged describing the exfoliation, functionalized and solubilization of h-BN. In this study, we report on a straightforward approach to modify the surface and its application as a new type of biomedical applications. The prepared product is structurally characterized by FTIR spectroscopy, field emission (FESEM), TGA technique, XPS spectrum, and BET surface area measurements. Nano- composites were immobilized on electrodes to detect the glucose, L-cysteine in buffer medium by cyclic voltammetry (CV), square wave voltammetry (SWV), and impedance spectroscopic (EIS). potential application of the covalent functionalization, cheap precursors, biodegradability and multifunctionality of high-performance composites boron nitride, they could be used for a wide range of the future biomedical applications.


2020 ◽  
Vol 319 ◽  
pp. 08003
Author(s):  
Luchen Zhang ◽  
Xuena Jia ◽  
Guanjie Yang ◽  
Chaoqun Sun

At present, sprayed concrete has problems such as low strength, large rebound amount, and high dust concentration. Developed a new type of alkali-free liquid accelerator, which can effectively improve the performance of shotcrete. The alkali-free liquid accelerator is mainly composed of aluminum sulfate, active aluminum hydroxide, alcohol amine, amide, and stabilizer. Through laboratory tests and field tests, when the alkali-free liquid accelerator admixture is 5% to 7%, the initial setting time is within 5 minutes, and the final setting time is within 10 minutes. The strength of shotcrete reaches 12.8MPa in one day, and the compressive strength ratio of 28d is more than 95.3%, and the rebound amount is within 10%. Compared with ordinary alkali-free liquid accelerator and alkaline liquid accelerator, the strength of sprayed concrete mixed with the alkali-free liquid accelerator is greatly improved, which is more conducive to the support of the sprayed layer, reduced rebound and dust, effectively improve the construction environment and increase construction efficiency.


1996 ◽  
Vol 33 (1) ◽  
pp. 53-60
Author(s):  
Seiji Yamaguchi

Sludge density is an important index for the control of sewage and sludge treatment processes. A new measuring method for sludge density, the microwave phase difference method, has been tested with a good correlation between density and phase difference. Comparison tests with conventional ultrasonic density meters have shown characteristics that are superior to the flow-through type and equivalent to the defoaming type. We developed a sludge density meter that uses this method and made long-term field tests on the sludge pipelines in sewage treatment plants. Results demonstrated a good correlation with the values that were obtained by manual analysis, with excellent linearity from low density of less than 1% to high density of about 30%. This new microwave measurement method is less affected by soil build-up and air bubbles, is able to measure a wide range of densities from low to high, and is capable of continuous measurement. It is a highly reliable measuring method for practical applications.


2008 ◽  
Vol 17 (04) ◽  
pp. 729-771 ◽  
Author(s):  
ANAS N. AL-RABADI

New type of m-ary systolic arrays called reversible systolic arrays is introduced in this paper. The m-ary quantum systolic architectures' realizations and computations of the new type of systolic arrays are also introduced. A systolic array is an example of a single-instruction multiple-data (SIMD) machine in which each processing element (PE) performs a single simple operation. Systolic devices provide inexpensive but massive computation power, and are cost-effective, high-performance, and special-purpose systems that have wide range of applications such as in solving several regular and compute-bound problems containing repetitive multiple operations on large arrays of data. Similar to the classical case, information in a reversible and quantum systolic circuit flows between cells in a pipelined fashion, and communication with the outside world occurs only at the boundary cells. Since basic PEs used in the construction of arithmetic systolic arrays are the add–multiply cells, the results introduced in this paper are general and apply to a very wide range of add–multiply-based systolic arrays. Since the reduction of power consumption is a major requirement for the circuit design in future technologies, such as in quantum computing, the main features of several future technologies will include reversibility. Consequently, the new systolic circuits can play an important task in the design of future circuits that consume minimal power. It is also shown that the new systolic arrays maintain the high level of regularity while exhibiting the new fundamental bijectivity (reversibility) and quantum superposition properties. These new properties will be essential in performing super-fast arithmetic-intensive computations that are fundamental in several future applications such as in multi-dimensional quantum signal processing (QSP).


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 497-501 ◽  
Author(s):  
C. D. Boyette ◽  
G. E. Templeton ◽  
R. J. Smith

An indigenous, host-specific, pathogenic fungus that parasitizes winged waterprimrose [Jussiaea decurrens(Walt.) DC.] is endemic in the rice growing region of Arkansas. The fungus was isolated and identified asColletotrichum gloeosporioides(Penz.) Sacc. f.sp. jussiaeae(CGJ). It is highly specific for parasitism of winged waterprimrose and not parasitic on creeping waterprimrose (J. repensL. var.glabrescensKtze.), rice (Oryza sativaL.), soybeans [Glycine max(L.) Merr.], cotton (Gossypium hirsutumL.), or 4 other crops and 13 other weeds. The fungus was physiologically distinct from C.gloeosporioides(Penz.) Sacc. f. sp.aeschynomene(CGA), an endemic anthracnose pathogen of northern jointvetch[Aeschynomene virginica(L.) B.S.P.], as indicated by cross inoculations of both weeds. Culture in the laboratory and inoculation of winged waterprimrose in greenhouse, growth chamber and field experiments indicated that the pathogen was stable, specific, and virulent in a wide range of environments. The pathogen yielded large quantities of spores in liquid culture. It is suitable for control of winged waterprimrose. Winged waterprimrose and northern jointvetch were controlled in greenhouse and field tests by application of spore mixtures of CGJ and CGA at concentrations of 1 to 2 million spores/ml of each fungus in 94 L/ha of water; the fungi did not damage rice or nontarget crops.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


2019 ◽  
Vol 29 (1) ◽  
pp. 130-140 ◽  
Author(s):  
Florian Gerland ◽  
Alexander Wetzel ◽  
Thomas Schomberg ◽  
Olaf Wünsch ◽  
Bernhard Middendorf

Abstract Modern concretes such as ultra-high performance concrete (UHPC) show excellent strength properties combined with favorable flow properties. However, the flow properties depend strongly on process parameters during production (temperature, humidity etc.), but also change sensitively even with slight variations in the mixture. In order to ensure desired processing of the fluidlike material and consistent process quality, the flow properties of the concrete must be evaluated quantitatively and objectively. The usual evaluation of measurements from concrete rheometers, for example of the ball probe system type, does not allow the direct determination of the objective material parameters yield stress and plastic viscosity of the sample. We developed a simulation-based method for the evaluation of rheometric measurements of fine grained high performance concretes like self-compacting concrete (SCC) and UHPC. The method is based on a dimensional analysis for ball measuring systems. Through numerical parameter studies we were able to describe the identified relationship between measuring quantities and material parameters quantitatively for two devices of this type. The evaluation method is based on the Bingham model. With this method it is possible to measure both the yield stress and the plastic viscosity of the fresh sample simultaneously. Device independence of the evaluation process is proven and an application to fiber-reinforced UHPC is presented.


2021 ◽  
Vol 2 (1) ◽  
pp. 46-62
Author(s):  
Santiago Iglesias-Baniela ◽  
Juan Vinagre-Ríos ◽  
José M. Pérez-Canosa

It is a well-known fact that the 1989 Exxon Valdez disaster caused the escort towing of laden tankers in many coastal areas of the world to become compulsory. In order to implement a new type of escort towing, specially designed to be employed in very adverse weather conditions, considerable changes in the hull form of escort tugs had to be made to improve their stability and performance. Since traditional winch and ropes technologies were only effective in calm waters, tugs had to be fitted with new devices. These improvements allowed the remodeled tugs to counterbalance the strong forces generated by the maneuvers in open waters. The aim of this paper is to perform a comprehensive literature review of the new high-performance automatic dynamic winches. Furthermore, a thorough analysis of the best available technologies regarding towline, essential to properly exploit the new winches, will be carried out. Through this review, the way in which the escort towing industry has faced this technological challenge is shown.


Sign in / Sign up

Export Citation Format

Share Document