Critical review of Canadian Standards Association standard CSA-A23.3-94 provisions for punching shear strength of edge column–slab connections

2003 ◽  
Vol 30 (6) ◽  
pp. 1069-1080 ◽  
Author(s):  
Alaa G Sherif ◽  
Walter H Dilger

The purpose of this paper is to critically review the punching shear strength provisions of the Canadian Standards Association standard CSA-A23.3-94 for edge column–slab connections. Tests from the literature and our own experiments are used to study the most important parameters affecting the punching shear strength of edge slab–column connections. Based on the test results the eccentric shear stress model is evaluated for edge column connections, and improvements are suggested.Key words: edge column–slab connections, flat concrete plates, shear strength, punching shear, shear reinforcement, moment transfer.

1996 ◽  
Vol 23 (2) ◽  
pp. 444-456 ◽  
Author(s):  
Amin Ghali ◽  
Sami Megally

The requirements of the new Canadian Standard CSA-A23.3-94 "Design of concrete structures" to avoid punching failure of slabs at their connections with columns are critically reviewed. Changes are proposed to avoid unsafe design and to cover practical situations not adequately treated by the Standard. Key words: columns, connections, flat concrete plates, punching shear, reinforced concrete, shear reinforcement, shear strength, stud shear reinforcement, slabs.


2021 ◽  
Vol 11 (6) ◽  
pp. 2736
Author(s):  
Min Sook Kim ◽  
Young Hak Lee

In this study, the structural behavior of reinforced concrete flat plates shear reinforced with vertical grids made of a glass fiber reinforced polymer (GFRP) was experimentally evaluated. To examine the shear strength, experiments were performed on nine concrete slabs with different amounts and spacings of shear reinforcement. The test results indicated that the shear strength increased as the amount of shear reinforcement increased and as the spacing of the shear reinforcement decreased. The GFRP shear reinforcement changed the cracks and failure mode of the specimens from a brittle punching to flexure one. In addition, the experimental results are compared with a shear strength equation provided by different concrete design codes. This comparison demonstrates that all of the equations underestimate the shear strength of reinforced concrete flat plates shear reinforced with GFRP vertical grids. The shear strength of the equation by BS 8110 is able to calculate the punching shear strength reasonably for a concrete flat plate shear reinforced with GFRP vertical grids.


1996 ◽  
Vol 23 (5) ◽  
pp. 998-1011 ◽  
Author(s):  
Alaa G. Sherif ◽  
Walter H. Dilger

The purpose of this paper is to demonstrate that the shear design of slabs according to the relevant Canadian CSA A23.3-94 (and U.S. ACI 318-95) design codes can be unsafe under certain conditions, and to propose improved design equations, some of which should be considered immediately for implementation in the Canadian CSA code. The paper deals with interior slab–column connections, with and without shear reinforcement, subjected to shear force alone or to a combination of shear force and unbalanced bending moment. Some comparisons with the British code BS 8110-85 and the CEB –FIP model code 1990 are also made. Tests reported in the literature and some experiments by the authors provide the basis for this study. Key words: flat concrete plates, slab–column connections, shear strength, punching shear, shear reinforcement, moment transfer.


2002 ◽  
Vol 29 (4) ◽  
pp. 602-611 ◽  
Author(s):  
Ehab F El-Salakawy ◽  
Maria Anna Polak ◽  
Khaled A Soudki

The paper presents work on punching shear rehabilitation and strengthening of existing slab–column connections. Four full-scale specimens representing slab–column edge connections were built and tested to failure. Three slabs were then repaired and strengthened and tested again. In the originally tested slabs, which were chosen for repair, one slab had an opening in front of the column and contained shear reinforcement, one slab had an opening and no shear reinforcement, and one had no opening and no reinforcement. The dimensions of the slabs were 1540 × 1020 × 120 mm with square columns (250 × 250 mm). The openings in the specimens were square (150 × 150 mm) with the sides parallel to the sides of the column. The slabs were made using normal weight concrete (28-day average compressive strength of 32 MPa) and reinforced with a reinforcement ratio of 0.75%. The slabs were repaired by replacing old-damaged concrete with new concrete of the same properties. Strengthening was carried out using shear studs for the two slabs, which originally did not have shear reinforcement. The rehabilitation increased the punching shear strength (by 26–41%) and the ductility of the connections. All repaired specimens failed in flexure.Key words: concrete slabs, punching shear, rehabilitation, edge connections, openings, studs, repair.


2018 ◽  
Vol 26 (1) ◽  
pp. 111-118
Author(s):  
Min Sook Kim ◽  
Joowon Kang ◽  
Young Hak Lee

This paper discusses the experimental results on the shear behavior of concrete wide beams reinforced with glass fiber reinforced polymer (GFRP) plates as shear reinforcement. In order to examine the shear performance, a total of six concrete wide beams were manufactured and tested. All the specimens were designed to have the same number of legs of shear reinforcement. The transverse spacing of shear reinforcement was considered as a variable to investigate the influence of transverse spacing of concrete wide beams. From the test results, it is observed that the shear strength increased when transverse spacing of the shear reinforcement decreased. In addition, an equation is proposed to predict the shear strength of concrete wide beams in order to consider the influence of transverse spacing of the shear reinforcement. The equation is based on the test results and modified ACI 318–14. It is verified that the proposed equation is considered to be better than ACI 318–14.


2014 ◽  
Vol 627 ◽  
pp. 245-248
Author(s):  
Hyun Ki Choi

The punching shear on the flat plate slab-column connection can bring about the reason of the brittle punching shear failure which may result of collapsing the whole structure. From the development of residential flat plate system, the shear reinforcement is developed for preventing the punching shear. This study proposed 3 reinforcements that are increased to bond capacity using lateral bar, the structure test is performed. As performed test result, because slabs not keep enough bond length, slab is failed before shear reinforcement's yield strength duo to anchorage of slip. According to result, FEM analyzed an effect of slab thickness and concrete compressive. The study suggests shear strength formula that possible a positive shear reinforcement in slab-column connection.


2010 ◽  
Vol 2 (3) ◽  
pp. 93-100
Author(s):  
Gediminas Marčiukaitis ◽  
Remigijus Šalna

The paper presents the review and analysis of the existing methods and models for calculating punching shear strength. The analysis of the existing design methods has showed that there is no unified theory about calculating punching shear strength. The models are similar in the way that fictitious shear stresses act in the fictitious shear area and are mainly obtained from the test results that may differ in their values. Therefore, the difference between the results obtained employing various calculation methods can be as high as 1,37 times, whereas the difference between the results of theoretical calculations and test research may vary up to 1,8 times. These facts clearly demonstrate that punching shear phenomena are not completely analyzed and require additional researches. The paper also proposes an in-deep analysis of famous analytical punching shear calculation models suggested within the last 50 years like Kinnunen and Nylander (1960), Moe (1961), Breastrup et al. (1976), Georgopoulos (1989), Broms (1990), Hallgren (1998), Menetrey (2002) and Theodorakopoulos (2002). The development of the above mentioned design models, the main assumptions and an algorithm for calculating punching shear strength are discussed in the article. The review of the existing models for calculating punching shear strength has also revealed that two main model types can be distinguished: type 1 – failure occurs when the compression zone is cut by shear and compression stress; type 2 – failure occurs when tensile stresses in concrete punching cone exceeds its tensile strength. A comparison between theoretical models and test results performed by different authors demonstrate that more accurate results can be obtained by calculating punching shear strength using the first types of models. The analysis has revealed it is purposeful to search for more effective reinforcing methods that can change the character of failure from brittle to plastic. A more effective replacement of reinforcement and the behaviour of concrete taking into account complex stress state in the failure zone should be applied.


Sign in / Sign up

Export Citation Format

Share Document