Critical review of the CSA A23.3-94 punching shear strength provisions for interior columns

1996 ◽  
Vol 23 (5) ◽  
pp. 998-1011 ◽  
Author(s):  
Alaa G. Sherif ◽  
Walter H. Dilger

The purpose of this paper is to demonstrate that the shear design of slabs according to the relevant Canadian CSA A23.3-94 (and U.S. ACI 318-95) design codes can be unsafe under certain conditions, and to propose improved design equations, some of which should be considered immediately for implementation in the Canadian CSA code. The paper deals with interior slab–column connections, with and without shear reinforcement, subjected to shear force alone or to a combination of shear force and unbalanced bending moment. Some comparisons with the British code BS 8110-85 and the CEB –FIP model code 1990 are also made. Tests reported in the literature and some experiments by the authors provide the basis for this study. Key words: flat concrete plates, slab–column connections, shear strength, punching shear, shear reinforcement, moment transfer.

2013 ◽  
Vol 4 (4) ◽  
pp. 133-144 ◽  
Author(s):  
Šarūnas Kelpša ◽  
Mindaugas Augonis

When the various reinforced concrete structures are designed according to EC2 and STR, the difference of calculation results, is quite significant. In this article the calculations of shear strength of bending reinforced concrete elements are investigated according to these standards. The comparison of such calculations is also significant in the sense that the shear strength calculations are carried out according to different principles. The STR regulations are based on work of the shear reinforcement crossing the oblique section and the compressed concrete at the end of the section. In this case, at the supporting zone, the external bending moment and shear force should be in equilibrium with the internal forces in reinforcement and compressed concrete, i.e., the cross section must be checked not only from the external shear force, but also from bending moment. In EC2 standard, the shear strengths are calculated according to simplified truss model, which consists of the tension shear reinforcement bars and compressed concrete struts. The bending moment is not estimated. After calculation analysis of these two methods the relationships between shear strength and various element parameters are presented. The elements reinforced with stirrups and bends are investigated additionally because in EC2 this case is not presented. According to EC2 the simplified truss model solution depends on the compression strut angle value θ, which is limited in certain interval. Since the component of tension reinforcement bar directly depends on the angle θ and the component of compression strut depends on it conversely, then exists some value θ when the both components are equal. So the angle θ can be found when such two components will be equated. However, such calculation of angle θ became complicated if the load is uniform, because then the components of tension bar are estimated not in support cross section but in cross section that are displaced by distance d. So, the cube equation should be solved. For simplification of such solution the graphical method to find out the angle θ and the shear strength are presented. In these graphics the intersection point of two components (shear reinforcement and concrete) curves describes the shear strength of element. Santrauka Straipsnyje apžvelgtos ir palygintos STR ir EC2 įstrižojo pjūvio stiprumo skaičiavimo metodikos stačiakampio skerspjūvio elementams. Normatyve neapibrėžtas EC2 metodikos santvaros modelio spyrių posvyrio kampo skaičiavimas, lemiantis galutinį įstrižojo pjūvio stiprumą. Straipsnyje pateikiamos kampo θ apskaičiavimo lygtys, atsižvelgiant į apkrovimo pobūdį. Norint supaprastinti pateiktų lygčių sprendimą siūlomas grafoanalitinis sprendimo būdas, pritaikant papildomus koeficientus. EC2 neapibrėžia skaičiavimo išraiškų, kai skersinis armavimas yra apkabos ir atlankos. Minėtos išraiškos suformuluotos ir pateiktos straipsnyje. Nustačius EC2 metodikos dėsningumus siūlomas alternatyvus apytikslis skaičiavimo būdas atlankomis ir apkabomis armuotiems elementams. Straipsnyje apžvelgtos abi – STR ir EC2 – metodikos, išskiriant pagrindinius skirtumus ir dėsningumus.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Jesús Miguel Bairán ◽  
Nikola Tošić ◽  
Albert de la Fuente

AbstractFibre reinforced concrete (FRC) is increasingly used for structural purposes owing to its many benefits, especially in terms of improved overall sustainability of FRC structures relative to traditional reinforced concrete (RC). Such increased structural use of FRC requires safe and reliable models for its design in ultimate limit states (ULS). Particularly important are models for shear strength of FRC members without shear resistance due to the potential of brittle failure. The fib Model Code 2010 contains a model for the shear strength of FRC members without shear reinforcement and the same partial factor accepted for RC structures is accepted for FRC elements. This approach, however, is potentially on the unsafe side since the uncertainties of some design-determining mechanical properties of FRC (i.e., residual flexural strength) are larger than those for RC. Therefore, in this study, a comprehensive reliability-based calibration of the partial factor γc for the shear design of FRC members without shear reinforcement according to the fib Model Code 2010 model is performed. As a first step, the model error δ is assessed on 332 experimental results. Then, a parametric analysis of 700 cases is performed and a relationship between the target failure probability βR and γc is established. The results demonstrate that the current model together with the prescribed value of γc = 1.50 does not comply with the failure probabilities accepted for the different consequences of failure of FRC members over a 50-year service life. Therefore, changes to the shear resistance model are proposed in order to achieve the target failure probabilities.


1996 ◽  
Vol 23 (2) ◽  
pp. 444-456 ◽  
Author(s):  
Amin Ghali ◽  
Sami Megally

The requirements of the new Canadian Standard CSA-A23.3-94 "Design of concrete structures" to avoid punching failure of slabs at their connections with columns are critically reviewed. Changes are proposed to avoid unsafe design and to cover practical situations not adequately treated by the Standard. Key words: columns, connections, flat concrete plates, punching shear, reinforced concrete, shear reinforcement, shear strength, stud shear reinforcement, slabs.


2003 ◽  
Vol 30 (6) ◽  
pp. 1069-1080 ◽  
Author(s):  
Alaa G Sherif ◽  
Walter H Dilger

The purpose of this paper is to critically review the punching shear strength provisions of the Canadian Standards Association standard CSA-A23.3-94 for edge column–slab connections. Tests from the literature and our own experiments are used to study the most important parameters affecting the punching shear strength of edge slab–column connections. Based on the test results the eccentric shear stress model is evaluated for edge column connections, and improvements are suggested.Key words: edge column–slab connections, flat concrete plates, shear strength, punching shear, shear reinforcement, moment transfer.


2021 ◽  
Vol 11 (6) ◽  
pp. 2736
Author(s):  
Min Sook Kim ◽  
Young Hak Lee

In this study, the structural behavior of reinforced concrete flat plates shear reinforced with vertical grids made of a glass fiber reinforced polymer (GFRP) was experimentally evaluated. To examine the shear strength, experiments were performed on nine concrete slabs with different amounts and spacings of shear reinforcement. The test results indicated that the shear strength increased as the amount of shear reinforcement increased and as the spacing of the shear reinforcement decreased. The GFRP shear reinforcement changed the cracks and failure mode of the specimens from a brittle punching to flexure one. In addition, the experimental results are compared with a shear strength equation provided by different concrete design codes. This comparison demonstrates that all of the equations underestimate the shear strength of reinforced concrete flat plates shear reinforced with GFRP vertical grids. The shear strength of the equation by BS 8110 is able to calculate the punching shear strength reasonably for a concrete flat plate shear reinforced with GFRP vertical grids.


2017 ◽  
Vol 738 ◽  
pp. 25-35
Author(s):  
Lukáš Lyčka ◽  
Petr Štěpánek

The use of flat slabs in constructions due to its many functional and economic advantages is wide-spread. Behavior of flat slabs in shear and flexure is a fairly complex problem. Therefore, the punching shear failure belongs to one of the most critical aspects in the design of concrete buildings.The purpose of this paper is to describe a framework of the proposed method for predicting the punching shear of flat slabs with shear reinforcement. Most of the current codes in force are mainly based on empirical formulation. The proposed method is based on a strut-and-tie model and therefore could be considered as an analytical approach. For the purpose of demonstrating the effectiveness of the proposed method, the method is compared with some of the main methods currently in use, such as Eurocode EC2, ACI 318 and Model Code 2010. The comparison consists of results of more than 90 experiments on flat slabs with shear reinforcement, gathered from publications from all around the world.


2006 ◽  
Vol 33 (8) ◽  
pp. 933-944 ◽  
Author(s):  
H El Chabib ◽  
M Nehdi ◽  
A Saïd

The exact effect that each of the basic shear design parameters exerts on the shear capacity of reinforced concrete (RC) beams without shear reinforcement (Vc) is still unclear. Previous research on this subject often yielded contradictory results, especially for reinforced high-strength concrete (HSC) beams. Furthermore, by simply adding Vc and the contribution of stirrups Vs to calculate the ultimate shear capacity Vu, current shear design practice assumes that the addition of stirrups does not alter the effect of shear design parameters on Vc. This paper investigates the validity of such a practice. Data on 656 reinforced concrete beams were used to train an artificial neural network model to predict the shear capacity of reinforced concrete beams and evaluate the performance of several existing shear strength calculation procedures. A parametric study revealed that the effect of shear reinforcement on the shear strength of RC beams decreases at a higher reinforcement ratio. It was also observed that the concrete contribution to shear resistance, Vc, in RC beams with shear reinforcement is noticeably larger than that in beams without shear reinforcement, and therefore most current shear design procedures provide conservative predictions for the shear strength of RC beams with shear reinforcement.Key words: analysis, artificial intelligence, beam depth, compressive strength, modeling, shear span, shear strength.


2017 ◽  
Vol 259 ◽  
pp. 178-183
Author(s):  
Lukáš Lyčka ◽  
Petr Štěpánek

The purpose of this paper is to describe a framework of the proposed method for predicting the punching shear of flat slabs with shear reinforcement. The proposed method is based on a strut-and-tie model. Current methods of predicting the punching shear strength of flat slabs could be divided into these categories: models based on empirical equations, physical models, analytical methods and finite element methods. Most of the current codes in force would be best described as empirical formulations. Physical model for prediction of punching shear is described in Model Code 2010. Proposed method for flat slabs with shear reinforcement is based mainly on a strut-and-tie model and therefore could be considered as an analytical method.For the purpose of demonstrating the effectiveness of the proposed method, the method is compared with some of the main methods currently in use, such as Eurocode EC2, American code ACI 318 and Model Code 2010. The comparison consists of results of more than 98 experiments of punching shear on the flat slabs with shear reinforcement, gathered from publications from all around the world.


2002 ◽  
Vol 29 (4) ◽  
pp. 602-611 ◽  
Author(s):  
Ehab F El-Salakawy ◽  
Maria Anna Polak ◽  
Khaled A Soudki

The paper presents work on punching shear rehabilitation and strengthening of existing slab–column connections. Four full-scale specimens representing slab–column edge connections were built and tested to failure. Three slabs were then repaired and strengthened and tested again. In the originally tested slabs, which were chosen for repair, one slab had an opening in front of the column and contained shear reinforcement, one slab had an opening and no shear reinforcement, and one had no opening and no reinforcement. The dimensions of the slabs were 1540 × 1020 × 120 mm with square columns (250 × 250 mm). The openings in the specimens were square (150 × 150 mm) with the sides parallel to the sides of the column. The slabs were made using normal weight concrete (28-day average compressive strength of 32 MPa) and reinforced with a reinforcement ratio of 0.75%. The slabs were repaired by replacing old-damaged concrete with new concrete of the same properties. Strengthening was carried out using shear studs for the two slabs, which originally did not have shear reinforcement. The rehabilitation increased the punching shear strength (by 26–41%) and the ductility of the connections. All repaired specimens failed in flexure.Key words: concrete slabs, punching shear, rehabilitation, edge connections, openings, studs, repair.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022108
Author(s):  
Daniel Čereš ◽  
Katarína Gajdošová

Abstract The main reasons for strengthening flat slabs are the change of the use of a building, increase in the value of loads, degradation of the concrete cover layer, or insufficient reinforcement. This paper is focused on the assessment of punching shear capacity of the strengthened flat slabs without shear reinforcement. One of the possibilities how to enhance punching shear capacity is the addition of reinforced concrete topping. The main goal of this paper is to compare the possibilities for calculation of the increase in the punching shear capacity by investigation of the influence of different thicknesses of concrete toppings and different reinforcement ratio. A reference specimen is represented by a fragment of a flat slab with the thickness of h = 200 mm supported by circular column with the diameter of 250 mm. Three different thicknesses (50 mm, 100 mm, 150 mm) of concrete toppings were considered together with three different reinforcement ratios for each thickness of concrete overlay. Theoretical predictions of the punching shear resistance of flat slabs were evaluated by design guidelines according to the relevant standards: Eurocode 2 (EN 1992-1-1), Model Code 2010 and draft of the second generation of Eurocode 2 (prEN 1992-1-1). The differences in the influence of reinforcement ratio are significant. In Model Code 2010 the reinforcement ratio in concrete topping was considered in equation of moment of resistance. This is unlike in both of the mentioned Eurocodes, where the reinforcement ratio was assumed as a geometric average value of the original reinforcement ratio in the slab before strengthening and of the reinforcement ratio of concrete topping. All the predicted theoretical calculations are based on the perfect connection and bond between the original and new layer of concrete. These predictions should be verified by experimental investigation, which is going to be prepared shortly. By the additional increase in the thickness of concrete topping or in the amount of added reinforcement the attention should be payed to the limitation of the punching shear resistance by the value of the maximum punching shear resistance in the compression concrete strut.


Sign in / Sign up

Export Citation Format

Share Document