Structural behavior of alternative low floor height system using structural "tee," half precast concrete, and horizontal stud

2005 ◽  
Vol 32 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Young K Ju ◽  
Sang-Dae Kim

Conventional composite construction consisting of steel beams and concrete slabs has been widely used throughout the world. When compared with a concrete flat-slab structure, however, the reduced beam height is a significant problem and is particularly important in a city where land prices are higher because a height reduction of 15 cm per storey can lead to a 750 cm reduction in the total height for a 50 storey building (equivalent to two storeys). In this paper a newly developed composite beam, the technical, economical, and convenient (TEC) beam, is proposed and experimentally investigated using a series of monotonic loading tests. The results show that the capacity of the proposed system is in agreement with design code predictions, and the system demonstrates a reliable composite behavior between steel beam and concrete slab.Key words: composite beam, steel structure, monotonic loading, flexural capacity.

2021 ◽  
Author(s):  
Jianxin Zhang ◽  
Xian Rong ◽  
Xiaowei Zhang ◽  
Yanyan Li ◽  
Yansheng Du ◽  
...  

Abstract In recent decades, connections between concrete-filled steel tubular columns (CFST) and H-steel beams have been well designed and implemented. However, owing to poor construction quality, brittle failure often occurs at weld seams. In this study, an innovative joint was developed to connect CFST columns and H-steel beams using a top-weld bottom-bolt (TWBB) connection to minimize the effect of welding quality on the seismic resistance of joints. Six specimens were designed for cycle-reversed loading tests to discuss the seismic performance of this joint. Four configurations, including different connection methods, beam heights, column forms, and stiffener thicknesses, were considered in the test. The impacts of different configuration forms on the failure mode, strength, stiffness, ductility, and energy dissipation of the specimens were evaluated. The test results demonstrated that the columns with or without concrete had a significant effect on the deformation capacity. However, a smaller effect was observed on other indicators. The replacement of the through-diaphragm and an increase in the beam height adversely influenced the ductility of the joint. Moreover, changing the stiffener thickness and using a full-bolted connection affected the failure mode. The joint type analyzed in this study satisfies the strong column–weak beam design criterion and the related seismic provisions.


2003 ◽  
Vol 30 (4) ◽  
pp. 607-614 ◽  
Author(s):  
Yoon-Chil Kim ◽  
Soobong Shin ◽  
Jong-Jin Park

Grout-type transverse joints between precast concrete slabs were tested to study their static and fatigue behaviours. The tests were performed with loading equipment especially designed and constructed in the laboratory to introduce shear force on the joints of the test specimens. The aim of this study was to improve the shear and fatigue strength of grout-type transverse joints by identifying the effects of prestressing the specimens. The results indicated that longitudinal prestressing was an effective method to increase both the shear and fatigue strengths of grout-type transverse joints. Rational methods to estimate the cracking and ultimate loads for grout-type transverse joints are proposed based on the static loading tests. An estimation of the fatigue strength with respect to the amount of prestress is also suggested to aid in design of the grout-type transverse joint.Key words: grout-type transverse joints, precast concrete slabs, shear and fatigue strength, prestressing.


2009 ◽  
Vol 19 (6) ◽  
pp. 679-706 ◽  
Author(s):  
Won-Kee Hong ◽  
Seon-Chee Park ◽  
Ho-Chan Lee ◽  
Jin-Min Kim ◽  
Seung-Il Kim ◽  
...  

2018 ◽  
Vol 203 ◽  
pp. 06010
Author(s):  
Nadiah Loqman ◽  
Nor Azizi Safiee ◽  
Nabilah Abu Bakar ◽  
Noor Azline Mohd Nasir

Conventional steel-concrete composite beams have been recognized to exhibit stronger structural characteristics, in terms of strength and stiffness, when compared to pure steel or reinforced concrete beams. However, currently most steel beam is fully attached to the concrete slab; this means that the shear connectors are welded through the steel decking on to the steel beam and cast into concrete slab to fulfill the necessary shear connection. Recently, the deconstruction and reuse of the components almost impossible. In order to achieve a sustainable structural system, precast concrete slabs are attached to a steel beam using bolted shear connectors in prefabricated holes have been introduced as an alternative to the conventional connectors in steel – concrete composite beam system. This paper reviews the structural behavior of composite beam system such as the strength, stiffness, slip behavior, failure mode and sustainability obtained by experiment and numerical studies in order to address the applicability and efficiency of the composite beams having precast concrete slabs and bolted shear connectors.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Liufeng Zhang ◽  
Yinghua Yang ◽  
Jiongfeng Liang

In order to study the performance of partially precast partially encased assembled composite beam (PPECB) in reducing costs and reducing carbon dioxide (CO2) emissions, this paper obtained the bearing capacity of PPECBs by a static test. Considering the load conditions and beam height conditions as constraints, the steel-concrete composite beam (SCCB) and reinforced concrete beam (RCB) were optimized and designed based on the principle of fully utilizing the advantages of steel and concrete. On the basis of investigating the quantity of different materials, the cost and CO2 emissions of the three different types of beams were analyzed. The cost and CO2 emission of the PPECB are the lowest, and SCCBs have the highest cost and CO2 emissions. This paper can provide reference for design choice and further research from the perspective of cost and CO2 emission and lay a solid foundation for the realization of economic and environment-friendly buildings.


Author(s):  
Jerome F. Hajjar ◽  
Lizhong Wang ◽  
Mark D. Webster

Conventional steel-concrete composite floor systems utilizing steel headed stud anchors and metal decks are cost-effective and widely used solutions for non-residential multi-story buildings, due in part to their enhanced strength and stiffness relative to non-composite systems. Because these systems use steel headed stud anchors welded onto steel flanges and encased in cast-in-place concrete slabs to achieve composite action, it is not possible to readily deconstruct and reuse the steel beams and concrete slabs. As the building industry is moving towards sustainability, there are clear needs for developing sustainable steel-concrete composite floor systems to facilitate material reuse, minimize consumption of raw materials, and reduce end-of-life building waste. This paper presents the behavior and design strategies for a sustainable steel-concrete composite floor system. In this system, deconstructable clamping connectors are utilized to attach precast concrete planks to steel beams to achieve composite action. The load-slip behavior of the clamping connectors was studied in pushout tests, and the test results showed that the clamping connectors possess similar shear strength to 19 mm diameter shear studs and much greater slip capacity. Four full-scale beam tests were performed to investigate the flexural behavior of the deconstructable composite beams under gravity loading and validate the connector behavior attained from the pushout tests. All the beams behaved in a ductile manner. The flexural strengths of the composite beam specimens closely match the strengths predicted for composite beams by the design provisions of the American Institute of Steel Construction (AISC).


2019 ◽  
Vol 97 ◽  
pp. 04022
Author(s):  
Nikolay Trekin ◽  
Emil Kodysh ◽  
Alexander Bybka ◽  
Alexander Yamalov ◽  
Nikita Konkov

The article provides an analysis and justification of the need to take into account the compliance of discs of overlapping and coatings when calculating frames from precast concrete structures. Previously conducted full-scale experiments showed that the rigidity of the precast overlapping with full filling of the seams, in comparison with the monolithic overlapping, decreases by 3-15 times due to the ductility of the joints. The use of refined computational models of structural solutions for frames, which take into account the compliance of the conjugations of elements, makes it possible to trace possible redistribution of efforts. Such an approach when reconstructing, it is possible to optimally select and calculate the enforcement of structure, and on new designing, to increase reliability and / or improve the economic performance of frame buildings. According to the results of analytical studies, formulas were adopted for the parameters that allow one to take into account the overall compliance of overlapping disks and coatings in computational models of building frames. Numerical studies on the computational model of a frame building made it possible to evaluate the effect of accounting for compliance on the stress-strain state of a multi-storey frame.


Author(s):  
Yevhen Dmytrenko

Traditional methods of calculation of beam constructions of floors and coverings of industrial buildings assume their consideration when calculating separately from the frame structures, in particular, reinforced concrete slabs, without taking into account their joint work, which leads to a significant margin of safety. Today in Ukraine there is a significant number of industrial buildings and structures that need strengthening and reconstruction. In this regard, of particular importance are studies of the actual load-bearing capacity of the frames of single-storey and multi-storey industrial buildings, and both in the reconstruction and in new construction, the results of which will significantly reduce costs and more rationally design structures. At the same time, one of the most relevant areas is the study of the joint work of metal load-bearing structures with prefabricated reinforced concrete structures of rigid disks of coatings and floors in their calculation.           Moreover, in the national building codes, as well as in the educational and methodological literature, the calculation methods of taking into account the joint work of such constructions are not fully covered. The purpose of this work is to estimate the reduction of mass of the metal beam structure in its calculation in bending, taking into account the joint work with the rigid disk of the floor consist of precast concrete. As part of the study, the calculation of the floor beam according to the traditional calculation scheme - without taking into account the joint work with the floor slab, the calculation of its cross-section taking into account the joint work with floor slabs and experimental numerical study of the floor by the finite element method. Modeling of the floor fragment was performed in the software packages "SCAD Office" and "LIRA CAD 2019". Numerical research is aimed at verifying the feasibility of using the calculation methodology of DBN B.2.6-98-2009 to determine the effective width of the shelf when calculating the T-sections for prefabricated reinforced concrete slabs, which are included in the joint work with the floor beams. A comparative analysis of the obtained cross-section of the beam with the beam which was previously calculated by the traditional method of calculation  in stresses in the most dangerous cross section and the total mass of the beams. According to the results of the analysis, the correctness of the application of the above normative method for determining the effective width of the shelf of T-bending reinforced concrete elements was confirmed.


Sign in / Sign up

Export Citation Format

Share Document