Modifications to the design procedure for grit chambers

1987 ◽  
Vol 14 (2) ◽  
pp. 216-220 ◽  
Author(s):  
Sunil K. Agrawal ◽  
Jatinder K. Bewtra

A modified approach to the design of grit chambers has been suggested in this paper. This approach is based on the concept of critical shear stress at the bed rather than mean velocity as used by T. R. Camp. It is recognized that the relationship between critical bed shear stress and mean velocity in a channel is not constant, as assumed by Camp, but varies according to the flow conditions. Critical bed shear stress values, obtained in the laboratory for different particle characteristics, are given in this paper. The proposed method should provide a more rational and a better design procedure for grit chambers. Key words: grit chambers, scouring, bed shear stress, initiation of motion.

Author(s):  
Dipankar Biswas ◽  
Steven A. Lottes ◽  
Pradip Majumdar ◽  
Milivoje Kostic

Bridges are a significant component of the ground transportation infrastructure in the United States. With about sixty percent of bridge failures due to hydraulic causes, primarily scour, application of computational fluid dynamics (CFD) analysis techniques to the assessment of risk of bridge failure under flood conditions can provide increased accuracy in scour risk assessment at a relatively low cost. The analysis can be used to make optimum use of limited federal and state funds available to maintain and replace bridges and ensure public safety while traveling on the nation’s roads and highways during and after floods. Scour is the erosion of riverbed material during high flow conditions, such as floods. When scouring of the supporting soil around the piers and abutments of bridges takes place, risk of bridge failure increases. A simulation methodology to conservatively predict equilibrium shape and size of the scour hole under pressure flow conditions for flooded bridge decks using commercial CFD software was developed. The computational methodology has been developed using C++ to compute changes in the bed contour outside of the CFD software and generate a re-meshing script to change the bed boundary contour. STAR-CD was used to run the hydrodynamic analysis to obtain bed shear stress, and a BASH script was developed to automate cycling between computing bed shear stress with the CFD software and computing changes in the bed contour due to scour predicted using the computed shear stress for the current bed contour. A single-phase moving boundary formulation has been developed to compute the equilibrium scour hole contour that proceeds through a series of quasi-steady CFD computations. It is based on CFD analysis of the flow fields around the flooded bridge deck and shear stress computed at the bed modeled as a rough wall. A high Reynolds number k-ε turbulence model with standard wall functions, based on a Reynolds-Averaged Navier-Stokes (RANS) turbulence model, was used to compute bed shear stress. The scour sites on the bed were identified as those sites where the computed shear stress exceeded the critical shear stress computed from a published correlation for flat bed conditions. Comparison with experimental data obtained from the Turner-Fairbank Highway Research Center (TFHRC), McLean, VA, USA, revealed larger discrepancies than anticipated between the bridge inundation ratio and the scour hole depth. Although scour hole slopes were small for the cases tested, a correction to critical shear stress to account for bed slope was also tested. It did not significantly improve the correlation between CFD prediction and experimental observations. These results may be a consequence of using only excess shear stress above critical as a criteria for scour when other physical mechanisms also contribute to the initiation of scour. Prediction of scour depth using federal guidelines over predicts scour depth by as much as an order of magnitude in some cases. Over prediction is acceptable for purposes of ensuring bridge safety. CFD methods for scour prediction can be a significant improvement of current methods as long as under prediction of scour depth is avoided. Conservative scour prediction using CFD methods can be achieved by using conservative values of parameters such as critical shear stress and effective bed roughness.


2012 ◽  
Vol 1 (33) ◽  
pp. 4
Author(s):  
Pierre-Yves Henry ◽  
Alf Tørum ◽  
Øivind Artsen ◽  
Dag Myrhaug ◽  
Muk Chen Ong

This study is focusing on the threshold of sand motion under random waves combined with a following current. The analysis is based on some flume experiments realized over a natural sand bed for different flow conditions (waves and currents). The main result comes as a map of the probability to exceed the threshold of sand motion, as a function of a wave and a current mobility parameter. These observations are compared to methods predicting the bed shear stress using an equivalent monochromatic wave, and links between the probability of exceeding the critical shear stress for initiation of sand motion and the calculated maximum bed shear stress are found.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2346 ◽  
Author(s):  
Kiraga ◽  
Popek

Numerous approaches in sediment mobility studies highlighted the key meaning of channel roughness, which results not only from bed material granulation but also from various bed forms presence, caused by continuous sediment transport. Those forms are strictly connected with the intensity of particle transport, and they eventuate from bed shear stress. The present paper comprised of local scours geometric dimensions research in three variants of lengthwise development of laboratory flume in various hydraulic properties, both in “clear-water” and “live-bed” conditions of sediment movement. Lots of measurements of the bed conformation were executed using the LiDAR device, marked by a very precise three-dimensional shape description. The influence of the bed shear stress downstream model on scours hole dimensions of water structure was investigated as one of the key factors that impact the sediment transport intensity. A significant database of 39 experimental series, lasting averagely 8 hours, was a foundation for delineating functional correlations between bed shear stress-and-critical shear stress ratio and geometry properties of local scours in various flume development cases. In the scope of mutual influence of bed shear stress and water depth, high correlation coefficients were attained, indicating very good and good functional correlations. Also, the influence of bed shear stress and the total length of the scour demonstrated a high correlation coefficient.


2019 ◽  
Vol 81 ◽  
pp. 01014
Author(s):  
Rui Wang ◽  
Guoliang Yu

In this paper, the incipient condition of the fluidized bed sediment with different sizes and water contents were experimentally studied in an os- cillatory tunnel made of acrylic boards. One-hundred experimental runs were performed with sediment samples by varying the yield stress to determine the relationship between the critical condition of incipient motion and the rheolog- ical properties of the cohesive sediments. Experimental results showed that the yield stress of the bed sediment decreased as the fluidization level increased. When the yield stress is no longer changed, the bed sediment was considered completely fluidized. In oscillatory flow, the critical shear stress decreases with the increase of fluidization level. When the bed sediment reaches the full flu- idization state, the critical shear stress of the bed sediment at the bottom re- mained constant. For cohesive sediments, in the case that particle size and bulk density were known, the relationship between the yield stress and the critical shear stress was analyzed, and the incipient condition of the cohesive sediment under oscillatory flow action was determined.


2007 ◽  
Vol 34 (10) ◽  
pp. 1312-1323 ◽  
Author(s):  
Bahram Gharabaghi ◽  
Chris Inkratas ◽  
Spyros Beltaos ◽  
Bommanna Krishnappan

The Mackenzie River has several anomalous deep scour holes in a number of river channels in its delta. Proposed gas pipeline crossings have renewed interest in studying the stability of these scour holes. The main goal of this research project was to study flow velocity and bed shear stress distributions for a 30 m deep hole in the East Channel of the Mackenzie Delta as a first step toward assessing the stability of the scour hole and the risk of its migration during various flow conditions. In this study, a three-dimensional (3D) finite element flow model, FLUENT, using the renormalization group (RNG) k-ε turbulence model (where k is the turbulent kinetic energy and ε is the turbulence dissipation rate) was set up for the scour hole and calibrated using detailed measurements of 3D flow velocities, obtained with an acoustic doppler current profiler. The numerical model was then applied to predict flow velocity and bed shear stress distributions in and around the scour hole for three flow conditions (720, 1000, and 1400 m3/s). Results indicate that two vortices are formed in the river elbow above the scour hole. As the flow rate changed, the sizes of the vortices varied. The region upstream of the hole experienced the greatest magnitudes of bed shear stress.Key words: computational fluid dynamics, finite element, bed shear stress, deep hole, flow reversal.


Teknisia ◽  
2021 ◽  
Vol XXVI (1) ◽  
Author(s):  
Anggi Hermawan ◽  
◽  
Erwin Afiato ◽  

In the last decade, the problem that has occurred in the Yogyakarta Mataram irrigation channel is the occurrence of sedimentation in the channel. This has an impact on reducing the cross-sectional discharge capacity of the canal and resulting in the supply of irrigation discharge to agricultural areas to be not optimal, so that agricultural productivity in the Mataram Irrigation Area will also not be optimal. The sediment transport (bed load) that occurs in an open channel can be approached using the empirical equation, including the Einstein, Meyer - Peter Muller and Frijlink equations. Sediment transport events that occur in the channel are stated based on the magnitude of the flow shear stress which exceeds the critical shear stress of the sediment particles. The quantity of sediment transport in the channel is stated on the logarithmic curve of the relationship between the froude number (fr) to the sediment transports (qb). The Curve explains that the increase in the froude number (fr) that occurs on each section of the channel will be directly proportional to the increase in the quantity of transport sediment (qb). The largest sediment transport occurred at the site of the Gambang and Nambongan channel section with a prediction of sediment transport of 3.57 m3/day and 3.67 m3/day, respectively. Thus, the potential for sediment transport that will settle in the downstream area is 3.67 m3/day.


2021 ◽  
Author(s):  
Stephan Niewerth ◽  
Francisco Núñez-González ◽  
Toni Llull

<p>The entrainment and transport of sediment by hydrodynamic mechanisms is strongly related to bed shear stress exerted by flow. Therefore, to quantify sediment transport and to determine sediment incipient motion conditions, accurate estimations of bed shear stress are required. Most of the existing methods used in hydraulics and river engineering to determine bed shear stress are indirect, and are mostly restricted to limited flow conditions or contain a large degree of uncertainty. Although devices to perform direct measurements of boundary shear stress exist, they are normally based on expensive technology. We developed a shear plate for direct shear stress measurements, using relatively low cost components. In this work we present preliminary results of measurements performed with the new shear plate, to characterize the bottom shear stress generated by a ship propeller. The data result in the expected quadratic relation between bed shear stress and jet velocities, and also give evidence of a good reproducibility. We show that the new shear plate appears to be a promising device for reliable measurements of submerged boundary shear stress under a wide range of environments and flow conditions.</p>


2017 ◽  
Vol 44 (6) ◽  
pp. 426-440 ◽  
Author(s):  
Africa M. Geremew

The erosion of mine tailings was investigated by examining the physical processes during the initiation of motion of the tailings. Erosion experiments were conducted on mine tailings samples and natural soils in a Plexiglas laboratory annular column under 50 cm water cover. Resuspension was introduced with a Teflon stirrer and the bed shear stress was estimated from the measured near-bed velocity field and the pressure change in the boundary layer. Two modes of initiation of motion of cohesive mine tailings that showed cohesive behaviour was noticed: pitting erosion and line erosion and the modes of initiation of motion changed mainly with percentage of fines. At incipient motion of the tailings that showed cohesive behaviour, the pore water pressure distribution showed a relative sudden peak and a decline when the aggregated tailings burst. A four order of magnitude difference was observed between the undrained shear strength and critical shear stress for surface erosion of the tailings. The stochastic nature of the bed shear stress was explained by the Rayleigh distribution that provides an approach for correcting the critical shear stress estimated from the near-bed velocity. This correction is necessary to achieve a conservative estimate of the critical shear stress for design purposes.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1254
Author(s):  
Mohamed Elgamal

Despite its limitations, the Chezy bed shear stress formula is commonly used in depth-averaged flow numerical models as closure for estimating mutual tractive stresses with underneath boundaries. This paper proposes a novel moment-based formula that could be considered a revised version of the Chezy formula and can be used to estimate local variations of the bed shear stress under more complex and varied flow conditions with accelerating–decelerating flow fields. The formula depends on two velocity scales: the depth-averaged velocity, Uo, and a new moment-based velocity scale, u1. The new formula is calibrated using 10 experiments for flow over fixed bedforms, and the calibration coefficient is found to linearly correlate with h/Δ and h/zo ratios. The formula is also applied for the case of air flow across a negative step, jet water flow downstream a gate, and 2D water flow downstream an oblique negative step, and reasonably satisfactory agreement with the measured data is found. The new formula could be used in vertically averaged and moment models to disclose part of the information already lost by the vertical integration procedure.


Sign in / Sign up

Export Citation Format

Share Document