Interconnection of widely spaced angles

1988 ◽  
Vol 15 (4) ◽  
pp. 732-741 ◽  
Author(s):  
Murray C. Temple ◽  
Joo Chai Tan

Research on the interconnection of widely spaced back-to-back angles has not been conducted. This research was carried out with the aim of developing rules for the design and spacing of interconnectors in such members. Four parameters—the number of interconnectors, the back-to-back spacing between angles, the weld pattern used to connect the interconnectors to the angles, and the thickness of the interconnectors—were studied. The experimental and the theoretical results for the slender double angles confirm that only one interconnector, of practical proportions, is required to make the widely spaced angles act as an integral unit. Both the separation between angles, within reason, and the weld pattern used to connect the interconnectors to the angles had an insignificant effect on the failure load and the failure mode. The thickness of the interconnector did affect the load-carrying capacity of the strut, but only when the thickness of the interconnector was impractically small. The forces and moments in the interconnectors are very small. Key words: angles, back-to-back, buckling, building (codes), columns (structural), design interconnection.

1994 ◽  
Vol 21 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Murray C. Temple ◽  
Sherief S. S. Sakla ◽  
David Stchyrba ◽  
Douglas Ellis

Starred angles are commonly used as web members in trusses. Standards contain requirements which specify the number of interconnectors to be used, but most standards do not specify a preferred arrangement for the interconnectors. When plates are used as interconnectors, three arrangements — aligned, alternating, or cruciform — are possible. Nine starred angles, three with each arrangement of interconnectors, were tested. A finite element analysis was also conducted. It was determined that the arrangement of the interconnectors did not affect the load-carrying capacity of the starred angles. Key words: angles, buckling, building (codes), columns (structural) interconnection, starred angle.


1993 ◽  
Vol 20 (4) ◽  
pp. 708-711 ◽  
Author(s):  
Murray C. Temple ◽  
Ghada Elmahdy

Built-up struts that buckle about an axis perpendicular to the plane of the connectors should be treated as a "built-up" member as opposed to a "simple" member. This mode of buckling causes shear and moments in the connectors which deform the connectors. These deformations increase the lateral deformation of the member and hence affect the load-carrying capacity. To account for this effect the easiest method is to use an equivalent slenderness ratio such as the one included in the Canadian Standard. This note outlines the derivation of the equivalent slenderness ratio equation, discusses when it should and should not be used, and includes a numerical example. A rewording of the applicable clause in the Canadian Standard is suggested. Key words: battens, built-up members, connectors, slenderness ratio.


Author(s):  
Jin Weon Kim ◽  
Chi Yong Park

The pipe failure tests were performed using 102mm-Sch.80 carbon steel pipe with various simulated local wall thinning defects, in the present study, to investigate the failure behavior of pipe thinned by flow accelerated corrosion (FAC). The failure mode, load carrying capacity, and deformation ability were analyzed from the results of experiments conducted under loading conditions of 4-point bending and internal pressure. A failure mode of pipe with a defect depended on the magnitude of internal pressure and axial thinning length as well as stress type and thinning depth and circumferential angle. Also, the results indicated that the load carrying capacity and deformation ability were depended on stress state in the thinning region and dimensions of thinning defect. With increase in axial length of thinning area, for applying tensile stress to the thinning region, the dependence of load carrying capacity was determined by circumferential thinning angle, and the deformation ability was proportionally increased regardless of the circumferential angle. For applying compressive stress to thinning region, however, the load carrying capacity was decreased with increase in axial length of the thinned area. Also, the effect of internal pressure on failure behavior was characterized by failure mode of thinned pipe, and it promoted crack occurrence and mitigated a local buckling of the thinned area.


1994 ◽  
Vol 21 (3) ◽  
pp. 396-403 ◽  
Author(s):  
Murray C. Temple ◽  
Sherief S. S. Sakla

Angles used as web members in trusses are often welded to the chords with unbalanced welds. This is necessary because of space limitations. It is not known what effect such a weld has on the compressive load carrying capacity of an angle. The standards and specification examined allow an unbalanced weld for an angle. The justification for using such a weld is based on research conducted on angles in tension. For these members, it was concluded that an unbalanced weld does not affect the tensile load carrying capacity of the angle. Research results for angles with different weld patterns subjected to compressive loads are not available in the literature. Eighteen tests were conducted on angle compression members with various weld patterns. It was determined that an unbalanced weld is detrimental to the load carrying capacity of an intermediate length angle but is beneficial for a slender angle. Key words: angles, column (structural), compressive resistance, effective length, standards, welds.


Author(s):  
R. J. Boness

Theoretical results of the load-carrying capacity of lightly loaded finite cylinders indicate that the effect of side leakage can be secondary to upstream boundary condition considerations. Neglecting side leakage the calculations are extended to cover the experimental results of Crook into the régime where the fluid properties are pressure dependent. The results support the adoption of the new velocity and velocity gradient boundary conditions suggested by Lauder.


2012 ◽  
Vol 446-449 ◽  
pp. 395-399
Author(s):  
Hong Ying Dong ◽  
Wan Lin Cao ◽  
Jian Wei Zhang

According to the structural design in a project in Dalian, experimental study on seismic behavior of composite core walls with steel tube-reinforced concrete (STRC) columns were carried out. Five 1/6 scale composite core wall specimens with different steel reinforced details in the walls and different openings on the walls were designed and tested under cyclic loading. Based on the experiment, hysteretic property, load-carrying capacity, ductility, energy dissipation capacity and damage characteristics of the five specimens were compared and analyzed. The results show that the core walls with STRC columns have good seismic behavior. And the seismic behavior can be greatly improved by setting concealed steel trusses in the walls.


Author(s):  
Nanang Gunawan Wariyatno ◽  
Yanuar Haryanto ◽  
Ay Lie Han ◽  
Buntara Sthenly Gan ◽  
Gathot Heri Sudibyo

2002 ◽  
Vol 18 (2) ◽  
pp. 98-104 ◽  
Author(s):  
O. Wänstrand ◽  
N. Schwarzer ◽  
T. Chudoba ◽  
Å. Kassman-Rudolphi

2010 ◽  
Vol 163-167 ◽  
pp. 2337-2342 ◽  
Author(s):  
Long Fei Wang ◽  
Mu Yu Liu

On the background of a long-span composite girder cable-stayed bridge with three pylons under construction for research, this paper establishes two models of the whole bridge by considering the structural geometric nonlinearity, material nonlinearity and interface slip effect in composite girder, one has stable cables between pylons but the other hasn’t, then comparatively studies the failure loads and structural internal forces of the two models to achieve effects of stable cable on the ultimate load-carrying capacity of the cable-stayed bridge. This research shows that the stable cables can strengthen the vertical stiffness of structure and obviously increase the failure load of the bridge, and the internal forces in main girder, middle pylon and stayed cables are smaller and their distributions are more reasonable under the failure load than those in the bridge with no stable cables, so the stable cables can effectively improve the ultimate load-carrying capacity of long-span composite girder cable-stayed bridges with three pylons.


Sign in / Sign up

Export Citation Format

Share Document