Behaviour and ultimate tensile strength of partial joint penetration groove welds

1989 ◽  
Vol 16 (3) ◽  
pp. 384-399 ◽  
Author(s):  
Darrel P. Gagnon ◽  
D. J. Laurie Kennedy

Partial joint penetration groove welds may be used in columns, for example, when it is not necessary to develop the full tensile capacity of the cross section. Also, where it is not feasible to make a full joint penetration groove weld because welding can be done from one side only, the strength of a partial joint penetration groove weld may be adequate. Limited experimental data have shown that the strength of partial penetration welds are proportional to their areas.A series of 75 tests on 25 mm thick, grade 300W and grade 350A steel plates, with welds made with matching electrodes and with 20–100% penetration, were conducted. The overall behaviour, the effects of percent penetration, plate strength, and the eccentricity of the load were investigated. The inherent ductility of the welds allows lateral deflections and straining to take place so that eccentrically loaded welds are as strong as concentrically loaded welds. The strength of welds is greater than the strength of the plate multiplied by the percent penetration and increases with the increasing lateral restraint that occurs with decreasing penetration. Design equations and resistance factors, based on weld strengths at least equal to the percent penetration multiplied by the ultimate tensile resistance of the plate, are proposed. Recommendations for fabrication are presented. Key words: behaviour, groove weld, limit states, partial joint penetration, strength, resistance factor, tension, ultimate.

1984 ◽  
Vol 11 (4) ◽  
pp. 1008-1019 ◽  
Author(s):  
Karen A. Baker ◽  
D. J. Laurie Kennedy

Data from 30 tests conducted on laterally unsupported steel beams, and 148 tests on biaxially loaded steel beam columns conducted by others are statistically analyzed to determine resistance factors appropriate for use with the design equations given in CSA Standard CAN3-S16.1-M84 (Steel structures for buildings—limit states design). The general value of 0.90 currently given in that standard for the resistance factor is shown to be conservative by 1 –6% for both laterally unsupported beams and biaxially loaded beam columns. Key words: beam columns, beams, biaxially loaded, laterally unsupported, limit states design, resistance factors, steel.


2013 ◽  
Vol 12 (2) ◽  
pp. 213-220
Author(s):  
Marian Giżejowski ◽  
Zbigniew Stachura

Issues related to safety requirements for steel elements subjected to different stress resultants in reference to limit states design philosophy according to Structural Eurocodes PN-EN and national codes PN-B are dealt with in the paper. The calibration of partial cross-section resistance factors is discussed on the basis of elements of steel floor structures where the permanent load component and the live load component of variable actions are the only components of load combinations. Final conclusions for their practical application in the codification process are formulated and values of partial factors for cross section resistance are proposed.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Roberta Layra Faragó Jardim ◽  
◽  
Marcilio Sousa da Rocha Freitas ◽  
André Luís Riqueira Brandão ◽  
◽  
...  

Cold-formed Steel profiles are structural profiles widely used in civil construction. They are often manufactured with perforations. The designing can be performed using the direct resistance method. Formulations were adapted by Moen and Schafer (2008) to consider the presence of perforations in these profiles. The objective of this study is to investigate the structural safety of columns with web perforations. The calculation of the resistance capacity was performed using the formulations proposed by the authors. The reliability indexes were determined using the First Order Reliability Method (FORM), First Order Second Moment (FOSM) and Monte Carlo Method (MCM), which are reliability methods for the Load and Resistance Factor Design (LRFD) and Limit States Design (LSD) philosophies. Following the same criteria performed by AISI S100, the resistance factors were obtained from the FOSM method. Based on the results, it was found that the desired security level for the LSD philosophy was not achieved. The calculated resistance factors are predominantly lower than the target. However, for the LRFD philosophy, the safety level was achieved, and the resistance factors were higher than the target.


1996 ◽  
Vol 33 (6) ◽  
pp. 984-1007 ◽  
Author(s):  
Dennis E Becker

The geotechnical engineering profession in Canada is in the process of evaluating limit states design (LSD) for its incorporation into codes of practice for foundation engineering to provide a consistent design approach between geotechnical and structural engineers. This paper describes the work carried out for the initial development of LSD for foundations in the National Building Code of Canada. A load and resistance factor design approach, based on a factored overall geotechnical resistance, is used. The resistance factors for the ultimate limit states of bearing capacity and sliding of shallow and deep foundations are derived from a direct calibration with working stress design (WSD) and from a reliability analysis. The resistance factors derived from both approaches are consistent with each other and provide a reasonably constant reliability index of about 3.0 to 3.5. A relationship is presented that relates the reliability index to a global factor of safety and resistance factor. Design examples are provided that show that the proposed LSD produces designs that are comparable with those produced by traditional WSD. The importance of serviceability limits states is discussed, and the items that require further study and research work to refine code calibration are identified. Key words: limit states design, reliability index, code calibration, resistance factors, foundations, ultimate limit states.


Author(s):  
George G. Goble

A load and resistance factor design (LRFD) bridge specification has been accepted by the AASHTO Bridge Committee. This design approach is now being implemented for highway bridges in the United States, including the design of driven pile foundations. To test the new specification's practicality and usefulness, an example problem has been solved using it. In the example, a pipe pile was designed to be driven into a granular soil to support a bridge column subjected to a factored axial compression load of 10 MN. The nominal strength selected for the pile was 1.58 MN with an estimated length of 25 m. Since the resistance factors are defined by the specified quality control procedures, the number of piles required in the foundation also depends on the quality control. In this example, the number of piles required varied from 15 to 8 with improved quality control, for a savings of almost half of the piles. This example indicated that the new AASHTO LRFD specification for driven pile design can be used effectively to produce a more rationally designed foundation. Some modifications should be made to include additional serviceability limit states, and additional research may indicate that changes should be made in some of the resistance factors.


2021 ◽  
Vol 18 (2) ◽  
pp. 135-143
Author(s):  
L.O. Osoba ◽  
W.A. Ayoola ◽  
Q.A. Adegbuji ◽  
O.A. Ajibade

This study examines the effect of heat input on the weld bead profile, microstructure and mechanical properties of single V- joint welded carbon and stainless-steel plates. The as-received sample steel plates were sectioned into eight pieces; dimension 75 X 30 X 10 mm  thicknesses. Shielded metal arc welding (SMAW) of heat inputs 1250 and 2030 J/mm was used to produce full penetration bead on the plates. Although visual inspection indicated that some of the welds were macro defect free, austenitic stainless steel exhibited more weld distortions than the carbon steel and this was partially attributed to its lower carbon content and the width to depth aspect ratio of the weld profile aside the magnitude of the induced stress. For the carbon steel, as the heat input increased, the hardness value of both the heat affected zone and fusion zone increased. In contrast, for stainless steel, the hardness values were reasonably comparable within same weld region (HAZ or FZ) irrespective of heat input. Furthermore, the ultimate tensile strength of the stainless steel decreased as heat input increased while the ductility increased with an increase in heat input, in contrast to carbon steel, where both ductility and ultimate tensile strength generally decreased.


2019 ◽  
Vol 13 (4) ◽  
pp. 5804-5817
Author(s):  
Ibrahim Sabry

It is expected that the demand for Metal Matrix Composite (MMCs) will increase in these applications in the aerospace and automotive industries sectors, strengthened AMC has different advantages over monolithic aluminium alloy as it has characteristics between matrix metal and reinforcement particles.  However, adequate joining technique, which is important for structural materials, has not been established for (MMCs) yet. Conventional fusion welding is difficult because of the irregular redistribution or reinforcement particles.  Also, the reaction between reinforcement particles and aluminium matrix as weld defects such as porosity in the fusion zone make fusion welding more difficult. The aim of this work was to show friction stir welding (FSW) feasibility for entering Al 6061/5 to Al 6061/18 wt. % SiCp composites has been produced by using stir casting technique. SiCp is added as reinforcement in to Aluminium alloy (Al 6061) for preparing metal matrix composite. This method is less expensive and very effective. Different rotational speeds,1000 and 1800 rpm and traverse speed 10 mm \ min was examined. Specimen composite plates having thick 10 mm were FS welded successfully. A high-speed steel (HSS) cylindrical instrument with conical pin form was used for FSW. The outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt. %) was 195 MPa at rotation speed 1800 rpm, the outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt.%) was 165 MPa at rotation speed 1000 rpm, that was very near to the composite matrix as-cast strength. The research of microstructure showed the reason for increased joint strength and microhardness. The microstructural study showed the reason (4 %) for higher joint strength and microhardness.  due to Significant   of SiCp close to the boundary of the dynamically recrystallized and thermo mechanically affected zone (TMAZ) was observed through rotation speed 1800 rpm. The friction stir welded ultimate tensile strength Decreases as the volume fraction increases of SiCp (18 wt.%).


2015 ◽  
Vol 11 (2) ◽  
pp. 2972-2978
Author(s):  
Fouad A. Majeed ◽  
Yousif A. Abdul-Hussien

In this study the calculations of the total fusion reaction cross section have been performed for fusion reaction systems 17F + 208Pb and 15C + 232Th which involving halo nuclei by using a semiclassical approach.The semiclassical treatment is comprising the WKB approximation to describe the relative motion between target and projectile nuclei, and Continuum Discretized Coupled Channel (CDCC) method to describe the intrinsic motion for both target and projectile nuclei. For the same of comparsion a full quantum mechanical clacualtions have been preforemd using the (CCFULL) code. Our theorticalrestuls are compared with the full quantum mechaincialcalcuations and with the recent experimental data for the total fusion reaction  checking the stability of the distancesThe coupled channel calculations of the total fusion cross section σfus, and the fusion barrier distribution Dfus. The comparsion with experiment proves that the semiclassiacl approach adopted in the present work reproduce the experimental data better that the full quantal mechanical calcautions. 


Sign in / Sign up

Export Citation Format

Share Document