scholarly journals Influence of Heat Inputs on Weld Profiles and Mechanical Properties of Carbon and Stainless Steel

2021 ◽  
Vol 18 (2) ◽  
pp. 135-143
Author(s):  
L.O. Osoba ◽  
W.A. Ayoola ◽  
Q.A. Adegbuji ◽  
O.A. Ajibade

This study examines the effect of heat input on the weld bead profile, microstructure and mechanical properties of single V- joint welded carbon and stainless-steel plates. The as-received sample steel plates were sectioned into eight pieces; dimension 75 X 30 X 10 mm  thicknesses. Shielded metal arc welding (SMAW) of heat inputs 1250 and 2030 J/mm was used to produce full penetration bead on the plates. Although visual inspection indicated that some of the welds were macro defect free, austenitic stainless steel exhibited more weld distortions than the carbon steel and this was partially attributed to its lower carbon content and the width to depth aspect ratio of the weld profile aside the magnitude of the induced stress. For the carbon steel, as the heat input increased, the hardness value of both the heat affected zone and fusion zone increased. In contrast, for stainless steel, the hardness values were reasonably comparable within same weld region (HAZ or FZ) irrespective of heat input. Furthermore, the ultimate tensile strength of the stainless steel decreased as heat input increased while the ductility increased with an increase in heat input, in contrast to carbon steel, where both ductility and ultimate tensile strength generally decreased.

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 981 ◽  
Author(s):  
Yan Liang ◽  
Yaohui Liu ◽  
Yulai Song ◽  
Wei Cui

The influence of welding heat input on the microstructure and mechanical properties of 5Cr5MoV die steel was studied in order to improve the mechanical properties of the cold working die and extend its service life. Shielded metal arc welding (SMAW) method was used with different heat inputs in the range from 4.2 to 6.61 kJ/cm to repair the 5Cr5MoV die steel. Microhardness and tensile properties were performed to evaluate the repaired quality of the cold working die steel. The microhardness of the weld repaired zone gradually decreased from the weld to the tempering zone. The highest microhardness in the weld repaired zone was 863 HV, and finally, it decreased to about 300 HV. With the increase of heat input, the tensile strength of the weld and the heat affected zone increased; nevertheless, the tensile strength of the tempering zone increased first and then decreased. As a result, 6.6 kJ/cm is the best value of heat input judged from the microhardness distribution and the tensile properties.


2019 ◽  
Vol 6 ◽  
pp. 21 ◽  
Author(s):  
Pravin Kumar Singh

This study presents a new concept of a vibratory welding setup which can transfer the mechanical vibrations in the weld zone during Shielded Metal Arc welding (SMAW) process and can also produce the resonance frequency of 300 Hz. In the present investigation mild steel plates of 6 mm thickness has been butt welded using both conventional and vibratory welding conditions. Microstructure and the mechanical properties of the butt welded joints were evaluated, and the results were compared. Further, in order to optimize the process parameters of vibratory welding technique Taguchi and analysis of variance (ANOVA) technique have been adopted. The responses considered for analysis are hardness, ultimate tensile strength (UTS) and impact strength. The result of the study indicates that by applying the vibratory treatment during welding process the mechanical properties such as hardness, tensile strength and impact strength have been enhanced. Lastly, the obtained results are correlated from the results in the past researches.


2019 ◽  
Vol 944 ◽  
pp. 193-198
Author(s):  
Tian Yi Wang ◽  
Ren Bo Song ◽  
Heng Jun Cai ◽  
Jian Wen ◽  
Yang Su

The present study investigated the effect of cold rolling reduction on microstructure and mechanical properties of a 204C2 Cr–Mn austenitic stainless steel which contained 16%Cr, 2%Ni, 9%Mn and 0.083 %C). The 204C2 austenitic stainless steels were cold rolled at multifarious thickness reductions of 10%, 20%, 30%,40% and 50%, which were compared with the solution-treated one. Microstructure of them was investigated by means of optical microscopy, X-ray diffraction technique and scanning electron microscopy. For mechanical properties investigations, hardness and tensile tests were carried out. Results shows that the cold rolling reduction induced the martensitic transformation (γ→α ́) in the structure of the austenitic stainless steel. With the increase of the rolling reduction, the amount of strain-induced martensite increased gradually. Hardness, ultimate tensile strength and yield strength increased with the incremental rolling reduction in 204C2 stainless steels, while the elongation decreased. At the thickness reduction of 50%, the specimen obtained best strength and hardness. Hardness of 204C2 stain steel reached 679HV. Ultimate tensile strength reached 1721 MPa. Yield strength reached 1496 MPa.


2016 ◽  
Vol 705 ◽  
pp. 250-254 ◽  
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
M. Wirawan Pu ◽  
Fandi Alfarizi

The aimed of this research is to determine the feasibility and effect of the mixture of the shielding gas in the physical and mechanical properties. Low carbon steel LR grade A in a thickness 12 mm were joined in butt joint types using GMAW (Gas Metal Arc Welding) with groove’s gap 5 mm and groove angle’s 400 with variation of shielding gas composition. The composition of shielding gas that used were 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2. The measured of mechanical properties with regard to strength, hardness and toughness using, tensile test, bending test, Vickers hardness Test, and Charpy impact test respectively. The physical properties examined with optical microscope. Results show that tensile strength of welding metals are higher than raw materials. Welds metal with mixing Ar + CO shielding gas has the highest tensile strength. Hardness of weld metals with the shielding gas 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2 are 244.9; 209.4; and 209.4 VHN respectively. The temperature of Charpy test was varied to find the transition temperature of the materials. The temperature that used were –60°C, -40°C, -20°C, 0°C, 20°C , and room temperature. Weld metals with various shielding gas have similar trends of toughness flux that was corellated with the microstructure of weld .


ROTASI ◽  
2017 ◽  
Vol 19 (4) ◽  
pp. 226
Author(s):  
Rusnaldy Rusnaldy ◽  
Muhammad Erfas Maulana

Proses pengelasan busur listrik dengan elektroda terbungkus (Shielded Metal Arc Welding-SMAW) banyak digunakan dalam aplikasi di industri dan konstruksi. Material yang juga banyak digunakan dalam aplikasi proses SMAW adalah baja karbon ASTM A36, yaitu jenis plain carbon steel. Kemampuan baja tersebut untuk disambung dengan menggunakan proses SMAW (weldability) dipengaruhi oleh banyak hal, salah satunya adalah heat input. Besarnya heat input pada proses pengelasan tergantung dari besarnya arus yang digunakan. Pada studi ini akan diteliti pengaruh besarnya arus yang digunakan, yaitu 70 A, 80 A dan 90 A, terhadap mampu las baja karbon ASTM A36. Metode yang digunakan untuk mengetahui mampu las baja tersebut adalah Controlled Thermal Severity (CTS) Test. Kawat elektroda yang digunakan adalah kawat elektroda terbungkus jenis E6013. Hasil yang diperoleh dari pengujian ini adalah mampu las baja ASTM A36 cukup baik. Hal ini diindikasikan dengan jumlah dan ukuran dari retak yang ditemukan masih di bawah harga minimum yang dipersyaratkan. Kemudian juga diketahui bahwa makin besar arus listrik yang digunakan menyebabkan peningkatan nilai kekerasan mikro dari logam las dan HAZ, namun jumlah dan ukuran retak jadi bertambah banyak dan besar.


2013 ◽  
Vol 331 ◽  
pp. 578-582 ◽  
Author(s):  
Li Chan Li ◽  
Meng Yu Chai ◽  
Yong Quan Li ◽  
Wen Jie Bai ◽  
Quan Duan

Influences of heat input on the microstructure and grain size of shielded metal arc welded 316L stainless steel joints were studied. Three heat input combinations were selected from the operating window of the shielded metal arc welding process and welded joints made using these combinations were subjected to microstructural evaluations so as to analyze the effect of thermal arc energy on the microstructure and grain size of these joints. The results of this investigation indicate that the microstructure of the weld zone and the fusion zone are austenite and a small amount of ferrite while the microstructure of the heat affected zone (HAZ) are austenite and a small amount of MC type carbides, and it can be seen that the amount of ferrite in the weld zone decreases with heat input. For the joints investigated in this study, the average grain size in the HAZ increases with heat input.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012018
Author(s):  
Suheni ◽  
A A Rosidah ◽  
D P Ramadhan ◽  
T Agustino ◽  
F F Wiranata

Abstract AISI 1045 and 304 stainless steel are widely used in automotive and industrial fields However, both of these steels have their own advantages and disadvantages. AISI 1045 is not resistant to corrosion but has good wear resistance and low price. Meanwhile, the 304 stainless steel provides good corrosion resistance and mechanical properties but is costly. Their combination is able to provide a good property and reduce the costs. Thus, in order to combine these two metals, shield metal arc welding is carried out using welding groove and electrode variation. The groove variations used were double bevel, V, and double V-groove, additionally, the electrode variations used were E6013 and E7016. Then, the welding results were characterized using the tensile strength and macrostructure analysis. The results revealed that the specimen using E7016 electrode for the double V-groove resulted in the highest tensile test results the value of 270.48 MPa yield strength, 411.49 MPa tensile strength, and 19.81% elongation. The macrostructure analysis showed that the specimens using E7016 electrode gave a narrow HAZ that led to higher mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6948
Author(s):  
Andrey Filippov ◽  
Nikolay Shamarin ◽  
Evgeny Moskvichev ◽  
Nikolai Savchenko ◽  
Evgeny Kolubaev ◽  
...  

Electron beam additive wire-feed deposition of Cu-7.5wt.%Al bronze on a stainless-steel substrate has been carried out at heat input levels 0.21, 0.255, and 0.3 kJ/mm. The microstructures formed at 0.21 kJ/mm were characterized by the presence of both zigzagged columnar and small equiaxed grains with 10% of Σ3 annealing twin grain boundaries. No equiaxed grains were found in samples obtained at 0.255 and 0.3 kJ/mm. The zigzagged columnar ones were only retained in samples obtained at 0.255 kJ/mm. The fraction of Σ3 boundaries reduced at higher heat input values to 7 and 4%, respectively. The maximum tensile strength was achieved on samples obtained with 0.21 kJ/mm as tested with a tensile axis perpendicular to the deposited wall’s height. More than 100% elongation-to-fracture was achieved when testing the samples obtained at 0.3 kJ/mm (as tested with a tensile axis coinciding with the wall’s height).


2011 ◽  
Vol 311-313 ◽  
pp. 84-87
Author(s):  
Shao Jiang Lin ◽  
Sai Yu Wang

The present research work concerns the development of TiC reinforced 316L stainless steel composites through powder metallurgical technology and sintered in vacuum. The effect of TiC particle addition and cooling rate on the mechanical properties of 316L stainless steel composites has been investigated. The results show that increasing the cooling rate caused enhancement of ultimate tensile strength and microhardness. However, the elongation to failure of the composites was decreased with the increase of cooling rate. The addition of TiC particle was found to improve the ultimate tensile strength of 316L stainless steel composites. The highest tensile strength was 648 MPa in specimens containing 5wt.% TiC. Further increase in TiC content to 10wt% results in a reduction in tensile strength to 631 MPa.


Author(s):  
Satyanarayana Kosaraju ◽  
Anil Kalluri ◽  
Swadesh Kumar Singh ◽  
Ahsan ul Haq

Abstract Austenitic Stainless-Steel grade 316L is one among the significant ASS grades which is most commonly used in various industry sectors. It has excellent corrosion resistance in ordinary atmospheric and also in more arduous environments such as salt water and environments where resistance to chloride corrosion is required. Whilst performing well when exposed to relatively high temperatures, this grade of Austenitic Stainless steel also maintains its strength and toughness at sub-zero temperatures, making this an excellent choice for various applications in industries sectors such as Marine, general construction, and water treatment. Therefore, present study focused on evaluating the mechanical properties such as ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) are evaluated based on the experimental data obtained from the uniaxial isothermal tensile tests performed at an interval of −25 °C from 0 °C to −50 °C and at three orientations (0, 45, 90) degrees to the rolling direction and cross head velocity (3, 5, 7) mm/min were chosen. A total of 27 experiments have been planned based on design of experiments to conduct experiments. A mathematical model for the prediction of ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) was developed using process parameters such as temperature, orientation and cross head velocities. Results have shown that mechanical properties can be predicted with a reasonable accuracy within the range of process parameters considered in this study.


Sign in / Sign up

Export Citation Format

Share Document