Wave–current effects on large offshore structures

1989 ◽  
Vol 16 (4) ◽  
pp. 543-551 ◽  
Author(s):  
Michael Isaacson ◽  
John Baldwin

The various effects that influence loads acting on a large offshore structure due to the combination of waves and currents are reviewed. These may be broadly associated with potential flow effects and viscous effects. The potential flow effects are nonlinear and may generally be investigated by perturbation or time-stepping methods. Viscous effects include the onset of flow separation, which affects the validity of the assumed potential flow, as well as steady and oscillatory forces. The fluid mechanics of the complete wave–current–structure interaction problem are not yet well understood and areas in need of additional research are identified. Key words: currents, drag, drift forces, hydrodynamics, ocean engineering, offshore structures, waves, wave forces.

1989 ◽  
Vol 16 (2) ◽  
pp. 182-187 ◽  
Author(s):  
Michael Isaacson ◽  
Qi-Hua Zuo

Nonlinear wave forces on a surface-piercing vertical circular cylinder are considered using a time-stepping method previously developed which is based on Green's theorem. Possible improvements in the efficiency, accuracy, and stability of the method are considered. Results based on this method are compared with those obtained previously using perturbation methods as well as with experimental results. It is found that the time-stepping method adopted here is quite reasonable. Wave force coefficients are given as functions of the governing parameters of the problem and the importance of nonlinear wave effects on the forces is assessed. Key words: hydrodynamics, ocean engineering, offshore structures, waves, wave forces.


Author(s):  
Syed Danish Hasan ◽  
Nazrul Islam ◽  
Khalid Moin

The response of offshore structures under seismic excitation in deep water conditions is an extremely complex phenomenon. Under such harsh environmental conditions, special offshore structures called articulated structures are feasible owing to reduced structural weight. Whereas, conventional offshore structure requires huge physical dimensions to meet the desired strength and stability criteria, therefore, are uneconomical. Articulated offshore towers are among the compliant offshore structures. These structures consist of a ballast chamber near the bottom hinge and a buoyancy chamber just below the mean sea level, imparting controlled movement against the environmental loads (wave, currents, and wind/earthquake). The present study deals with the seismic compliance of a double-hinged articulated offshore tower to three real earthquakes by solving the governing equations of motion in time domain using Newmark’s-β technique. For this purpose Elcentro 1940, Taft 1952 and Northridge 1994 earthquake time histories are considered. The tower is modeled as an upright flexible pendulum supported to the sea-bed by a mass-less rotational spring of zero stiffness while the top of it rigidly supports a deck in the air (a concentrated mass above water level). The computation of seismic and hydrodynamic loads are performed by dividing the tower into finite elements with masses lumped at the nodes. The earthquake response is carried out by random vibration analysis, in which, seismic excitations are assumed to be a broadband stationary process. Effects of horizontal ground motions are considered in the present study. Monte Carlo simulation technique is used to model long crested random wave forces. Effect of sea-bed shaking on hydrodynamic modeling is considered. The dynamic equation of motion is formulated using Lagrangian approach, which is based on energy principle. Nonlinearities due to variable submergence and buoyancy, added mass associated with the geometrical non-linearities of the system are considered. The results are expressed in the form of time-histories and PSDFs of deck displacement, rotational angle, base and hinge shear, and the bending moment. The outcome of the response establishes that seismic sea environment is an important design consideration for successful performance of hinges, particularly, if these structures are situated in seismically active zones of the world’s ocean.


Author(s):  
Tanvir Mehedi Sayeed ◽  
Bruce Colbourne ◽  
Heather Peng ◽  
Benjamin Colbourne ◽  
Don Spencer

Iceberg/bergy bit impact load with fixed and floating offshore structures and supply ships is an important design consideration in ice-prone regions. Studies tend to divide the iceberg impact problem into phases from far field to contact. This results in a tendency to over simplify the final crucial stage where the structure is impacted. The authors have identified knowledge gaps and their influence on the analysis and prediction of iceberg impact velocities and loads (Sayeed et. al (2014)). The experimental and numerical study of viscous dominated very near field region is the main area of interest. This paper reports preliminary results of physical model tests conducted at Ocean Engineering Research Center (OERC) to investigate hydrodynamic interaction between ice masses and fixed offshore structure in close proximity. The objective was to perform a systematic study from simple to complex phenomena which will be a support base for the development of subsequent numerical models. The results demonstrated that hydrodynamic proximity and wave reflection effects do significantly influence the impact velocities at which ice masses approach to large structures. The effect is more pronounced for smaller ice masses.


1990 ◽  
Vol 112 (1) ◽  
pp. 14-20 ◽  
Author(s):  
K. Yoshida ◽  
H. Suzuki ◽  
N. Oka

This paper presents a preliminary attempt to control the dynamic response of a towerlike offshore structure subjected to regular waves. The structures are modeled in two ways. One is a vertical rigid pipe supported at the lower end by a pin joint. The other is a vertical flexible pipe fixed at the lower end. The formulation of the optimal control shows that the control consists of a feedback control and a feedforward control based on the disturbance. In this research, two types of feedforward control are employed apart from the optimality. One is to compensate the entire wave forces acting on the structure. The other is on-off control to compensate the principal Fourier component of the wave forces by using the three states of the thruster, forward, stop and backward. The displacement and deformation of the structures were measured by an ultrasonic measurement system. The surface elevation was measured by a capacitance-type wave height meter. These data were sampled and processed by a 16-bit microprocessor, and the thrust was applied by a propeller-type thruster. The performance of the control was satisfactory, and the responses of the controlled structure were reduced to about 30 percent of those of the uncontrolled system.


1988 ◽  
Vol 15 (4) ◽  
pp. 698-708 ◽  
Author(s):  
Michael Isaacson ◽  
Kwok Fai Cheung

The present paper applies potential theory to describe the variation of the added mass of an iceberg and its coupling effects on an offshore structure for various separation distances up to the point of contact. The strengths and weaknesses of the proposed model are discussed together with its practical application in ice mass impact problems. An impact model based on dynamic analysis is developed to calculate the impact force and response of a structure for head-on collisions. Both the contact-point added mass estimated in the present study and the traditionally assumed far-field added mass are used in the impact model separately. The results are compared and the crucial roles played by the ambient fluid during impact are discussed. Key words: added mass, hydrodynamics, ice impact, ocean engineering, offshore structures.


1985 ◽  
Vol 25 (05) ◽  
pp. 757-764
Author(s):  
Kenneth G. Nolte

Abstract A probability distribution, which incorporates the random occurrence of wave heights and the uncertainty in the force coefficients of the Morison equation, was derived for the forces on offshore structures. The random occurrence of wave heights was assumed to be described by a Weibull distribution, and the uncertainty in the force coefficients was assumed to be represented by a normal distribution. Wave force was assumed to be proportional to wave height raised to a power. The assumed distributions and force relationship may not describe exactly the actual problem within a general framework, but the assumptions are believed to be applicable to the range of wave heights and conditions occurring for the selection of static design criteria for the forces on offshore structures. The applicability of the assumptions is enhanced because the primary results are expressed as ratios, which require only relative accuracy and not quantitative accuracy. Introduction The wave forces on an offshore structure are determined by a wave theory (e.g., Stokes or stream function) that relates the water kinematics (velocity and acceleration) to the wave parameters (height and period) and a theory that relates the resulting pressures on the structure to the predicted water kinematics (e.g., the Morison equation or refraction theory). Generally, the Morison equation, which incorporates two force coefficients - the drag and inertia coefficients - is used. The wave parameters experienced by a structure during a storm are random. Also, inferred values of the force coefficients from field measurements indicate a random scatter from wave to wave caused by the random nature of the processes involved and imperfect wave and hydrodynamic theories. Therefore, the prediction of wave forces and, ultimately, the selection of design criteria for offshore structures involve both the random nature of the wave parameters (e.g., height) and the uncertainty in the force coefficients. Procedures for selecting wave heights for design criteria have received considerable attention and are well established; however, the problem of considering the uncertainty in the force coefficients has received little attention. Currently, there is no rational procedure to account generally for coefficient uncertainty except to use arbitrary, and potentially unrealistic, guidelines, such as the mean value plus a multiple of the standard deviation. The purpose of this paper is to provide a rational framework for dealing with the uncertainty in force coefficients. This framework is statistical and incorporates into the force statistics the uncertainty of the force coefficients and the random occurrence of the wave parameters. Background The wave force, Q, on an offshore structure is generally determined by the Morison equation,Equation 1 QD and QI are defined as the drag and inertia forces, respectively, per unit length acting normal to a structural element; CD and CI are the drag and inertia coefficients (i.e., the force coefficients); v and v are the water velocity and acceleration normal to the element; d is the element diameter; and ?w is the mass density of water.


1993 ◽  
Vol 20 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Michael Isaacson ◽  
Norman Allyn ◽  
Gary Loverich

The present paper describes a study carried out to verify a new net pen system which has been developed for aquaculture farming at exposed coastal sites. The structure is based on the use of spar buoys rather than rigid floats to support the net. A prototype structure has been deployed in Juan de Fuca Strait, and a verification of the system is described. This has involved an assessment of the environmental conditions and hydrodynamic loading for the structure, strength and fatigue analyses, and a calibration of wave conditions and mooring line forces with respect to prototype measurements. Overall, the system has been found to perform very well. Recommendations are made for monitoring the prototype system and for carrying out a refined verification of the system based on additional data. Key words: aquaculture, fish farms, hydrodynamics, ocean engineering, offshore structures, waves, wave forces.


1985 ◽  
Vol 107 (3) ◽  
pp. 315-328 ◽  
Author(s):  
S. K. Chakrabarti

The computation of wave forces is one of the most vital tasks in the design of offshore structures. Many analytical tools are available for the determination of wave effects on offshore structures. These methods may be divided into two major categories: one for small members of an offshore structure and one for large members. A hybrid method is used for structures that have both types of members. The advances made in the last few years in the specific area of computing the high-frequency forces are reviewed here.


1996 ◽  
Vol 23 (2) ◽  
pp. 418-430 ◽  
Author(s):  
Michael Isaacson ◽  
John Baldwin

The present paper provides a brief review of the analysis of moored floating structures in waves and currents. A hydrodynamic analysis is required in order to predict wave and current effects on floating structures, and corresponding numerical models for determining transmitted and reflected wave heights, added masses, damping coefficients, and wave exciting forces are summarized. A mooring analysis is required in conjunction with the hydrodynamic analysis in order to calculate the restraint provided by the mooring system, as well as the structure motions, mooring line and anchor loads, and mooring line configurations. Various aspects of static, dynamic, and nonlinear responses are discussed and illustrated with example applications. Key words: coastal engineering, currents, floating structures, hydrodynamics, mooring forces, ocean engineering, wave forces, waves.


2019 ◽  
Author(s):  
Frédérick Jaouën ◽  
Arjen Koop ◽  
Lucas Vatinel

Abstract The horizontal motions of a moored offshore structure in waves are dominated by the resonance phenomena that occur at the natural frequencies of the system. Therefore, the maximum excursions of the structure depend on both the wave loads and the damping in the system. At present, potential flow calculations are employed for predicting the wave loads on offshore structures. However, such methods cannot predict hydrodynamic damping which is dominated by viscous effects. Therefore, the current practice in the industry is to obtain the low-frequency damping based on model testing. Nowadays, CFD simulations also have the potential to predict the low-frequency viscous damping of offshore structures in calm water. To obtain confidence in the accuracy of CFD simulations, a proper validation of the results of such CFD calculations is essential. In this paper, the flow around a forced surging or swaying LNGC is calculated using the CFD code ReFRESCO. The objective is to assess the accuracy and applicability of CFD for predicting the low-frequency viscous damping. After a description of the code and the used numerical methods, the results are presented and compared with results from model tests. Both inertia and damping coefficients are analyzed from the calculated hydrodynamics loads. Extensive numerical studies have been carried out to determine the influence of grid resolution, time step and iterative convergence on the flow solution and on the calculated damping. The numerical uncertainty of the results are assessed for one combination of amplitude and period for the surge motion. The CFD results are compared to experimental results indicating that the calculated damping coefficients agree within 5% for both surge and sway motion.


Sign in / Sign up

Export Citation Format

Share Document