Moored structures in waves and currents

1996 ◽  
Vol 23 (2) ◽  
pp. 418-430 ◽  
Author(s):  
Michael Isaacson ◽  
John Baldwin

The present paper provides a brief review of the analysis of moored floating structures in waves and currents. A hydrodynamic analysis is required in order to predict wave and current effects on floating structures, and corresponding numerical models for determining transmitted and reflected wave heights, added masses, damping coefficients, and wave exciting forces are summarized. A mooring analysis is required in conjunction with the hydrodynamic analysis in order to calculate the restraint provided by the mooring system, as well as the structure motions, mooring line and anchor loads, and mooring line configurations. Various aspects of static, dynamic, and nonlinear responses are discussed and illustrated with example applications. Key words: coastal engineering, currents, floating structures, hydrodynamics, mooring forces, ocean engineering, wave forces, waves.

2019 ◽  
Vol 23 (7) ◽  
pp. 1438-1453 ◽  
Author(s):  
Jiawei Zhang ◽  
Bing Zhu ◽  
Azhen Kang ◽  
Ruitao Yin ◽  
Xin Li ◽  
...  

Coastal bridges are exposed to hurricane waves and storm surges during hurricanes, which threaten the safety of the superstructures. Since waves and ocean currents coexist in the natural marine environment and the action of currents leads to changes in wave parameters and thus affects wave loads, considering their interaction is necessary for the study of wave forces on coastal bridges. In this study, hydrodynamic loads on a box girder with the joint action of regular waves and currents are investigated with both experiments and numerical models. A series of experiments of wave forces that include conditions with different wave heights, current velocities, wave periods and submergence depths are conducted in a wave flume. Two-dimensional numerical simulations are performed to further investigate the mechanics of wave-current forces on box girder bridges. The wave parameters and wave forces of the numerical simulations are compared with the experimental results. The results indicate that a following current usually leads to higher maximum horizontal forces and lower maximum vertical forces. The opposing current results in a higher maximum hydrodynamic vertical force than following current with a low submergence depth. However, due to the joint effect of the wave parameters and structure position relationships, the behaviours of wave forces in other situations become complicated. It is anticipated that this study can provide experimental data of wave-current forces for the superstructures of box girder bridges and enhance the understanding of the mechanism of bridge damage by waves and currents.


1989 ◽  
Vol 16 (4) ◽  
pp. 543-551 ◽  
Author(s):  
Michael Isaacson ◽  
John Baldwin

The various effects that influence loads acting on a large offshore structure due to the combination of waves and currents are reviewed. These may be broadly associated with potential flow effects and viscous effects. The potential flow effects are nonlinear and may generally be investigated by perturbation or time-stepping methods. Viscous effects include the onset of flow separation, which affects the validity of the assumed potential flow, as well as steady and oscillatory forces. The fluid mechanics of the complete wave–current–structure interaction problem are not yet well understood and areas in need of additional research are identified. Key words: currents, drag, drift forces, hydrodynamics, ocean engineering, offshore structures, waves, wave forces.


1993 ◽  
Vol 20 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Michael Isaacson ◽  
Norman Allyn ◽  
Gary Loverich

The present paper describes a study carried out to verify a new net pen system which has been developed for aquaculture farming at exposed coastal sites. The structure is based on the use of spar buoys rather than rigid floats to support the net. A prototype structure has been deployed in Juan de Fuca Strait, and a verification of the system is described. This has involved an assessment of the environmental conditions and hydrodynamic loading for the structure, strength and fatigue analyses, and a calibration of wave conditions and mooring line forces with respect to prototype measurements. Overall, the system has been found to perform very well. Recommendations are made for monitoring the prototype system and for carrying out a refined verification of the system based on additional data. Key words: aquaculture, fish farms, hydrodynamics, ocean engineering, offshore structures, waves, wave forces.


1980 ◽  
Vol 1 (17) ◽  
pp. 125
Author(s):  
Zhu Zhuang

The construction of New Oil Port in Dalian, C.P.R., was started around the end 1974 and completed in autumn 1976.In this paper a summary of the essential considerations in design and construction of this oil port, such as the planning of the pier, the determination of exciting forces (namely wave forces, forces due to earthquake, mooring line forces and berthing forces due to the impact of tanker on the fenders)on structures, the design of the large cylindrical cassion with a diameter of 9m and a height up to 19.7m and the construction of connecting bridges by two types, is presented.


1990 ◽  
Vol 17 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Michael Isaacson ◽  
Kevin McTaggart

This paper examines various hydrodynamic effects which should be considered when analyzing iceberg collisions with a fixed structure. Iceberg added mass is among the hydrodynamic parameters that must be known to evaluate collision severity. Effective added mass is shown to vary with collision duration and recommendations are made for the selection of added masses to be used in iceberg collision design. Iceberg impact velocities are influenced by waves and currents, which can both be significantly influenced by the presence of a large structure. Wave-driven iceberg drift motions are shown to be more sensitive than current-driven motions to the presence of a structure. The contribution of wave-induced oscillatory motions to impact velocity is also discussed. Key words: added mass, hydrodynamics, ice impact, icebergs, ocean engineering, offshore structures.


Author(s):  
AbdAlla M. AbdAlla ◽  
AbdAlla M. AbdAlla ◽  
Abkar A. Iraqi ◽  
Abkar A. Iraqi ◽  
Magdy M. Farag ◽  
...  

Sea level and wave data at Salalah coast (Oman) were used to simulate nearshore waves and current during the tropical cyclone ARB01 (9 May2002). STWAVE model (Steady State Spectral Wave) was applied for nearshore wave simulation, while M2D model ((Two-Dimensional Depth Averaged circulation model) was used to simulate nearshore current. The results of simulations (taking into account the mutual effects of both current and waves) showed that: The significant wave heights generally decrease from about 6m at the domain boundary to about 1 m close to the coast. The wave heights during the ebb period were higher than that during the flood period by about 1.5m. Along Salalah coast, higher waves were found along the eastern side of the domain. This is because the shielding effect of breakwater, which protect the western part of the coast from high waves. Relatively Strong current with values up to 1.5 ms-1 were found in the nearshore region during both ebb and flood periods. The M2D model results also showed cyclonic circulations during these periods which help in the renewal of harbor waters. Generally, the model results showed good agreements with observations in the investigated area.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 204
Author(s):  
Kamran Fouladi ◽  
David J. Coughlin

This report presents the development of a fluid-structure interaction model using commercial Computational fluid dynamics software and in-house developed User Defined Function to simulate the motion of a trout Department of Mechanical Engineering, Widener University holding station in a moving water stream. The oscillation model used in this study is based on the observations of trout swimming in a respirometry tank in a laboratory experiment. The numerical simulations showed results that are consistent with laboratory observations of a trout holding station in the tank without obstruction and trout entrained to the side of the cylindrical obstruction. This paper will be helpful in the development of numerical models for the hydrodynamic analysis of bioinspired unmanned underwater vehicle systems.


Author(s):  
Yijun Wang ◽  
Alex van Deyzen ◽  
Benno Beimers

In the field of port design there is a need for a reliable but time-efficient method to assess the behavior of moored ships in order to determine if further detailed analysis of the behavior is required. The response of moored ships induced by gusting wind and/or waves is dynamic. Excessive motion response may cause interruption of the (un)loading operation. High line tension may cause lines to snap, introducing dangerous situations. A (detailed) Dynamic Mooring Analysis (DMA), however, is often a time-consuming and expensive exercise, especially when responses in many different environmental conditions need to be assessed. Royal HaskoningDHV has developed a time-efficient computational tool in-house to assess the wave (sea or swell) induced dynamic response of ships moored to exposed berths. The mooring line characteristics are linearized and the equations of motion are solved in the frequency domain with both the 1st and 2nd wave forces taken into account. This tool has been termed Less=Moor. The accuracy and reliability of the computational tool has been illustrated by comparing motions and mooring line forces to results obtained with software that solves the nonlinear equations of motion in the time domain (aNySIM). The calculated response of a Floating Storage and Regasification Unit (FSRU) moored to dolphins located offshore has been presented. The results show a good comparison. The computational tool can therefore be used to indicate whether the wave induced response of ships moored at exposed berths proves to be critical. The next step is to make this tool suitable to assess the dynamic response of moored ships with large wind areas, e.g. container ships, cruise vessels, RoRo or car carriers, to gusting wind. In addition, assessment of ship responses in a complicated wave field (e.g. with reflected infra-gravity waves) also requires more research effort.


2009 ◽  
Vol 53 (01) ◽  
pp. 7-18
Author(s):  
Renchuan Zhu ◽  
Guoping Miao ◽  
Zhaowei Lin

Green water loads on sailing ships or floating structures occur when an incoming wave significantly exceeds freeboard and water runs onto the deck. In this paper, numerical programs developed based on the platform of the commercial software Fluent were used to numerically model green water occurrence on floating structures exposed to waves. The phenomena of the fixed floating production, storage, and offloading unit (FPSO) model and oscillating vessels in head waves have been simulated and analyzed. For the oscillating floating body case, a combination idea is presented in which the motions of the FPSO are calculated by the potential theory in advance and computional fluid dynamics (CFD) tools are used to investigate the details of green water. A technique of dynamic mesh is introduced in a numerical wave tank to simulate the green water occurrence on the oscillating vessels in waves. Numerical results agree well with the corresponding experimental results regarding the wave heights on deck and green water impact loads; the two-dimensional fixed FPSO model case conducted by Greco (2001), and the three-dimensional oscillating vessel cases by Buchner (2002), respectively. The research presented here indicates that the present numerical scheme and method can be used to actually simulate the phenomenon of green water on deck, and to predict and analyze the impact forces on floating structures due to green water. This can be of great significance in further guiding ship design and optimization, especially in the strength design of ship bows.


2021 ◽  
Author(s):  
Willemijn Pauw ◽  
Remco Hageman ◽  
Joris van den Berg ◽  
Pieter Aalberts ◽  
Hironori Yamaji ◽  
...  

Abstract Integrity of mooring system is of high importance in the offshore industry. In-service assessment of loads in the mooring lines is however very challenging. Direct monitoring of mooring line loads through load cells or inclinometers requires subsea installation work and continuous data transmission. Other solutions based on GPS and motion monitoring have been presented as solutions to overcome these limitations [1]. Monitoring solutions based on GPS and motion data provide good practical benefits, because monitoring can be conducted from accessible area. The procedure relies on accurate numerical models to model the relation between global motions and response of the mooring system. In this paper, validation of this monitoring approach for a single unit will be presented. The unit under consideration is a turret-moored unit operating in Australia. In-service measurements of motions, GPS and line tensions are available. A numerical time-domain model of the mooring system was created. This model was used to simulate mooring line tensions due to measured FPSO motions. Using the measured unit response avoids the uncertainty resulting from a prediction of the hydrodynamic response. Measurements from load cells in various mooring lines are available. These measurements were compared against the results obtained from the simulations for validation of the approach. Three different periods, comprising a total of five weeks of data, were examined in more detail. Two periods are mild weather conditions with different dominant wave directions. The third period features heavy weather conditions. In this paper, the data set and numerical model are presented. A comparison between the measured and numerically calculated mooring line forces will be presented. Differences between the calculated and measured forces are examined. This validation study has shown that in-service monitoring of mooring line loads through GPS and motion data provides a new opportunity for mooring integrity assessment with reduced monitoring system complexity.


Sign in / Sign up

Export Citation Format

Share Document