Flexural tests of two full-scale composite trusses

1992 ◽  
Vol 19 (2) ◽  
pp. 279-295 ◽  
Author(s):  
Anita Brattland ◽  
D. J. Laurie Kennedy

Steel trusses acting compositely with concrete slabs on wide rib profile steel deck have proven to be an economical system for long span floors. The flexural behaviour of two composite trusses with a span of 11.5 m was studied. The truss configuration consisted of hollow structural section chords with double angle web members welded on either side. The flexural tests showed that ductile behaviour up to failure can be obtained without failure of the web members, provided that the design is based on the ultimate tensile strength of the bottom chord, and the web members and shear connection are designed for the concomitant forces. The maximum moments attained were about 1.2 times the unfactored ultimate moment predicted by CSA Standard S16.1. The maximum strain in the bottom chord of both trusses was significantly higher than the yield strain, but did not reach the ultimate strain due to premature shear connection failure. The failure mode of the first composite truss demonstrated the need for additional rules for establishing the length of stud shear connectors for use in slabs on ribbed deck, as has been incorporated in S16.1-M89. A design procedure for double angle web members was developed, based on the test results. Key words: behaviour, composite steel–concrete trusses, flexure, long span, ultimate moment resistance.

2018 ◽  
Vol 21 (3) ◽  
pp. 393-404
Author(s):  
Ali Farhan Hadeed ◽  
Laith Khalid Al-Hadithy ◽  
Riyadh J. Aziz

The composite opened web steel joist supported floor systems have been common for many years. It is economic and has light weight and can embed the electrical conduit, ductwork and piping, eliminating the need for these to pass under the member, consequently eliminate the height between floors. In order to study the joist strength capacity under the various conditions, it had been fabricated seven joists composed of the steel and concrete slab connected to the top chord by shear connectors (headed studs). These joist have 2820 mm length c/c of the supports and 235 mm overall depth. In the present study, six variable parameters are adopted (Studs distribution, Degree of shear connection, Degree of the web inclination, Shape of the web, Density of concrete for slab and length of the shear connector). The test results exhibited that minimum strength capacity was 160kN for light weight joist and maximum capacity was 225kN for joist of long shear connectors at failure. The results were compared by ultimate flexural model by Azmi.


2020 ◽  
Vol 92 (6) ◽  
pp. 59-65
Author(s):  
G.P. TONKIH ◽  
◽  
D.A. CHESNOKOV ◽  
◽  

Most of Russian research about composite structure fire resistance are dedicated to the composite slab behavior. The composite beams fire resistance had been never investigated in enough volume: the temperature evaluation within the scope of the actual Russian design codes leads to the significant reduction in the shear connection strength. Meanwhile, there no correlation between the strength decreasing and type of the shear connection. The article provides an overview of the relevant researches and offers some approaches which could take into account bearing capacity reduction of the shear connectors within composite structures design.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 421
Author(s):  
Chang-Hwan Lee ◽  
Iman Mansouri ◽  
Jaehoon Bae ◽  
Jaeho Ryu

A new type of composite voided slab, the TUBEDECK (TD), which utilizes the structural function of profiled steel decks, has recently been proposed. Previous studies have confirmed that the flexural strength of TD slabs can be calculated based on the full composite contribution of the steel deck, but for long-span flexural members, the deflection serviceability requirement is often dominant. Herein, we derived a novel deflection prediction approach using the results of flexural tests on slab specimens, focusing on TD slabs. First, deflection prediction based on modifications of the current code was proposed. Results revealed that TD slabs exhibited smaller long-term deflections and at least 10% longer maximum span lengths than solid slabs, indicating their greater efficiency. Second, a novel rational method was derived for predicting deflections without computing the effective moment of inertia. The ultimate deflections predicted by the proposed method correlated closely with the deflection under maximum bending moments. To calculate immediate deflections, variation functions for the concrete strain at the extreme compression fiber and neutral axis depth were assumed with predictions in good agreement with experiments. The proposed procedure has important implications in highlighting a new perspective on the deflection prediction of reinforced concrete and composite flexural members.


2021 ◽  
Vol 232 ◽  
pp. 111910
Author(s):  
Lucas Ribeiro dos Santos ◽  
Rodrigo Barreto Caldas ◽  
Lucas Figueiredo Grilo ◽  
Hermes Carvalho ◽  
Ricardo Hallal Fakury

2018 ◽  
Vol 12 (05) ◽  
pp. 1850015 ◽  
Author(s):  
Wei Guo ◽  
Jianzhong Li ◽  
Nailiang Xiang

In this paper, a novel central buckle composed of buckling-restrained braces (BRBs) is developed for long-span suspension bridges, and its preliminary design procedure is presented. Seismic performance of suspension bridges equipped with BRB central buckles is investigated and compared with those with conventional central buckles (e.g. rigid or flexible central buckles). Furthermore, the effect of BRB yield force, as well as the effectiveness of BRB central buckles combined with viscous dampers, is evaluated using parametric analyses. The results indicate that the BRB central buckle is more effective than other central buckles in reducing both the longitudinal girder displacements and force demands on towers during an earthquake. Furthermore, the combination of BRB central buckles and viscous dampers is a superior option for mitigating the seismic response of long-span suspension bridges.


2011 ◽  
Vol 8 (1) ◽  
pp. 29-34
Author(s):  
M. Youcef ◽  
M. Mimoune ◽  
F. Mimoune

This paper describes the reliability analysis of shear connection in composite beams with profiled steel sheeting. The profiled steel sheeting had transverse ribs perpendicular to the steel beam. The level of safety of shear connection, and failure modes were determinate. An extensive parametric study was conducted to study the effects on the safety and behaviour of shear connection by changing the profiled steel sheeting geometries, the diameter and height of headed stud, as well as the strength of concrete. We compared the level safety calculated using the American specification, British standard and European code for headed stud shear connectors in composite slabs with profiled steel sheeting perpendicular to the steel beam. It is found that the design overestimated the level safety of shear connection.


2021 ◽  
Vol 295 (2) ◽  
pp. 16-26
Author(s):  
D.V. Konin ◽  

The shear connector design should be executed according to the SP 266.1325800.2016. For the different typed of welded connectors are there analytic dependences, which could be used for shear connection strength estimation. The design code also allows to use powder-actuated Z-shape shear connectors. Their bearing capacity should be proved by tests according to the GOST R 58336-2018. Inasmuch the GOST doesn't consist the test estimation approach, the authors offer the method. For the test estimation methods the test results of 15 series specimen had been used. The results were compared with estimation according to the European standard for the verification.


2018 ◽  
Vol 148 ◽  
pp. 525-541 ◽  
Author(s):  
Lucas Figueiredo Grilo ◽  
Ricardo Hallal Fakury ◽  
Ana Lydia Reis de Castro e Silva ◽  
Gustavo de Souza Veríssimo

Author(s):  
Deepshikha Nair ◽  
Yuki Terazawa ◽  
Ben Sitler ◽  
Toru Takeuchi

This paper investigates the seismic response characteristics of long-span domes. The natural periods of the prominent modes are longer than medium-span domes, which leads to a greater contribution from the higher modes to the response of the long-span dome. The acceleration distributions, particularly the vertical acceleration distributions are sensitive to the dominant mode shapes of these higher modes. This leads to inaccuracies when applying the previously proposed response evaluation methods. The vibration modes of multi-storey supporting substructures also affect the excited vibration modes of the roof. In this paper, the dynamic characteristics and seismic response of 150m-span domes supported by multi-storey substructures are studied. The effects of the post- yield stiffness of multi-storey substructures are also analysed by considering two structural systems, buckling- restrained braced frames (BRBF) and damped spine frames. A simple design procedure to evaluate the equivalent static loads using amplification factors and incorporating the effects of higher modes is proposed based on response spectrum analysis and equivalent linearisation procedures. The accuracy of the proposed method is evaluated by comparing the responses with those obtained from non-linear response history analysis.


Sign in / Sign up

Export Citation Format

Share Document