OBSERVATIONS ON THE INITIAL CYTOLOGICAL EFFECTS OF BACTERIOPHAGE INFECTION

1957 ◽  
Vol 3 (3) ◽  
pp. 493-499 ◽  
Author(s):  
J. F. Whitfield ◽  
R. G. E. Murray

Chromatin aggregation is the earliest cytological effect of several phage infections (e.g. P1, P2, and T7). This occurs at low multiplicities of infection if the medium contains a sufficient quantity of sodium chloride; on salt-deficient medium this aggregation no longer appears and is replaced by fragmentation. Infections with phages T2 and T5 do not normally result in the aggregation of the host chromatin, but this does occur when the multiplicity of infection is higher than three to six phages per cell and salt is present in the medium. The appearance of nuclear aggregation as the first cytological effect of infection under these circumstances adds an additional cytological stage. In the case of infection with T5 this is followed by chromatin disappearance, which is the normal first stage. Infections with T5, at high multiplicities, on salt-deficient agar cause chromatin fragmentation and no aggregation.Chromatin aggregation was again the major alteration in cell structure when T2 bacteriophage "ghosts" were adsorbed. Since injection of phage DNA and phage multiplication do not occur under these conditions, it is concluded that adsorption alone is sufficient to cause this effect.It is hypothesized that adsorption of phage alters the host cell surface so that the cell can no longer maintain an ionic equilibrium. The shift in internal ion balance is reflected in chromatin aggregation or fragmentation depending on the salt concentration of the medium.

Author(s):  
Yana Danilova ◽  
Viktoria V. Belousova ◽  
Andrey V. Moiseenko ◽  
Innokentii E. Vishnyakov ◽  
Maria V. Yakunina ◽  
...  

Bacteria develop various defense mechanisms against stresses, including the bacteriophage infection. The giant phiKZ phage infection induced the appearance of a pseudo-nucleus inside the bacterial cytoplasm. Here, we used FISH, electron tomography and analytical electron microscopy to study the morphology of this unique nucleus-like shell and to demonstrate the distribution of phiKZ and bacterial DNA in infected P. aeruginosa cells. The maturation of the pseudo-nucleus was traced in short intervals for 40 min after infection. This study was accompanied by the identification of phiKZ and bacterial DNA by real-time RCR. We demonstrated that phage DNA that isolated from the cytoplasm during all infection stages were compacted within the pseudo-nucleus in a specific structure. Bacterial DNA was diminished in the course of infection, but did not completely degrade until at least 40 min after phage application. The content of the total phage DNA, on the other hand, increased. EDX analysis confirmed these results and revealed that, during the infection, Sulfur content in the bacterial cytoplasm increased, which suggests the increase of DNA-binding Met-reach proteins synthesis, which could protect bacterial DNA from stress.


1972 ◽  
Vol 50 (7) ◽  
pp. 1485-1492 ◽  
Author(s):  
Michael D. Coffey ◽  
Barry A. Palevitz ◽  
Paul J. Allen

Similar changes occurred in the ultrastructure of host cell organelles in the rust-infected tissues of both flax and sunflower. Up to the onset of sporulation at 8 days after inoculation the only major alteration in cell structure was a marked tendency for the cell organelles to be aggregated around the intracellular fungal haustorium and an accumulation of starch in the plastids. During sporulation, however, some striking changes occurred in the structure of plastids, mitochondria, and microbodies. Eleven days after inoculation, in a zone of host tissue adjacent to the rust pustule, the plastids no longer contained starch and varied in structure even within a single cell. Some were similar to normal chloroplasts, others had larger grana, and some bore a close resemblance to chromoplasts. In sunflower, but not in flax, mitochondria contained atypical plate-like cristae in addition to the usual vesiculate type. The micro-bodies of both plant species all contained crystalline cores in contrast to earlier stages in the disease where crystals were only occasionally detected. The plastids were also altered considerably in another zone of tissue situated beneath the rust pustule. In some plastids the thylakoids extended along their long axis, forming several large grana, and in others the large grana were interconnected by lamellae arranged in a vesicular or tubular configuration. Frequently the starch grains in these plastids were broken down into small rosettes of darkly staining particles with an appearance similar to that of animal glycogen.


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
D. Caillard ◽  
J.L. Martin

The behaviour of the dislocation substructure during the steady stage regime of creep, as well as its contribution to the creep rate, are poorly known. In particular, the stability of the subboundaries has been questioned recently, on the basis of experimental observations |1||2| and theoretical estimates |1||3|. In situ deformation experiments in the high voltage electron microscope are well adapted to the direct observation of this behaviour. We report here recent results on dislocation and subboundary properties during stationary creep of an aluminium polycristal at 200°C.During a macroscopic creep test at 200°C, a cell substructure is developed with an average cell size of a few microns. Microsamples are cut out of these specimens |4| with the same tensile axis, and then further deformed in the microscope at the same temperature and stain rate. At 1 MeV, one or a few cells can be observed in the foil thickness |5|. Low electron fluxes and an image intensifier were used to reduce radiation damage effects.


Author(s):  
Dhruba K. Chattoraj ◽  
Ross B. Inman

Electron microscopy of replicating intermediates has been quite useful in understanding the mechanism of DNA replication in DNA molecules of bacteriophage, mitochondria and plasmids. The use of partial denaturation mapping has made the tool more powerful by providing a frame of reference by which the position of the replicating forks in bacteriophage DNA can be determined on the circular replicating molecules. This provided an easy means to find the origin and direction of replication in λ and P2 phage DNA molecules. DNA of temperate E. coli phage 186 was found to have an unique denaturation map and encouraged us to look into its mode of replication.


Author(s):  
William P. Sharp ◽  
Robert W. Roberson

The aim of ultrastructural investigation is to analyze cell architecture and relate a functional role(s) to cell components. It is known that aqueous chemical fixation requires seconds to minutes to penetrate and stabilize cell structure which may result in structural artifacts. The use of ultralow temperatures to fix and prepare specimens, however, leads to a much improved preservation of the cell’s living state. A critical limitation of conventional cryofixation methods (i.e., propane-jet freezing, cold-metal slamming, plunge-freezing) is that only a 10 to 40 μm thick surface layer of cells can be frozen without distorting ice crystal formation. This problem can be allayed by freezing samples under about 2100 bar of hydrostatic pressure which suppresses the formation of ice nuclei and their rate of growth. Thus, 0.6 mm thick samples with a total volume of 1 mm3 can be frozen without ice crystal damage. The purpose of this study is to describe the cellular details and identify potential artifacts in root tissue of barley (Hordeum vulgari L.) and leaf tissue of brome grass (Bromus mollis L.) fixed and prepared by high-pressure freezing (HPF) and freeze substitution (FS) techniques.


Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


Author(s):  
Mengzhe Chen ◽  
Siqin Wang ◽  
Jun Ke

A series of investigations have been conducted into the nature and origin of the dislocation cell structure. R.J.Klassen calculated that the dislocation cell limiting size in pure ferrite matrix is about 0.4 μm. M.N.Bassion estimated the size of dislocation cell in deformed ferrite of HSLA steels to be of the same order.In this paper, TEM observation has been concentrated on the interaction of fine carbide precipitates with dislocation cell structure in deformed Fe-C-V (0.05%C, 0.13% and 0.57%V) and Fe-C-Nb (0.07 %C and 0.04%Nb) alloys and compared with that in Fe-C (0.05%). Specimens were austenitized at 1500 “C/20 min and followed by isothermal treatment at 750 °C and 800 “C for 20, 40 and 120 minutes . The carbide particle sizes in these steels are from 9 to 86nm measured from carbon extraction replicas. Specimens for TEM were cut from differently deformed areas of tensile specimens deformed at room temperture. The thin foils were jet electropolished at -20 C in a solution of 10% perchloric acid and 90% ethanol. The TEM observation was carried out in JEM 100CX , EM420 at 100kv and JEM 2000FX at 200kv.


Sign in / Sign up

Export Citation Format

Share Document