Cloning of a xylanase gene from Fibrobacter succinogenes 135 and its expression in Escherichia coli

1991 ◽  
Vol 37 (7) ◽  
pp. 554-561 ◽  
Author(s):  
Y. J. Hu ◽  
D. C. Smith ◽  
K. -J. Cheng ◽  
C. W. Forsberg

A genomic library consisting of 4- to 7-kb EcoRI DNA fragments from Fibrobacter succinogenes 135 was constructed using a phage vector, λgtWESλB, and Escherichia coli ED8654 as the host bacterium. Two positive plaques, designated λFSX101 and λFSX102, were identified. The inserts were 10.5 and 9.8 kb, respectively. A 2.3-kb EcoRI fragment that was subcloned from λFSX101 into pBR322 also showed xylanase activity. Southern blot analysis showed that the cloned EcoRI fragment containing the xylanase gene had originated from F. succinogenes 135. The cloned endo-(1,4)-β-D-xylanase gene (pFSX02) was expressed constitutively in E. coli HB101 when grown on LB and on M9 medium containing either glucose or glycerol as the carbon source. Most of the β-D-xylanase activity was located in the periplasmic space. Zymogram activity stains of nondenaturing polyacrylamide gels and isoelectric focusing gels showed that several xylanase isoenzymes were present in the periplasmic fraction of the E. coli clone FSX02 and they probably were due to posttranslational modification of a single gene product. Comparison of the FSX02 xylanase and the xylanase from the extracellular culture fluids of F. succinogenes 135 and S85 for their ability to degrade oat spelt xylan showed that, for equal units of β-D-xylanase activity, hydrolysis by the cloned gene product was more complete. However, unlike the unfractionated mixture of xylanases from F. succinogenes 135 and S85, the enzyme from E. coli FSX02 was unable to release arabinose from oat spelt xylan. Key words: rumen bacterium, xylanase gene, λgtWESλB, cellulolysis, Fibrobacter succinogenes.

1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1763-1770 ◽  
Author(s):  
Ryszard Zielke ◽  
Aleksandra Sikora ◽  
Rafał Dutkiewicz ◽  
Grzegorz Wegrzyn ◽  
Agata Czyż

CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that cgtA is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacterial species, Escherichia coli and Vibrio harveyi, the cgtA gene product enhances survival of cells after UV irradiation. Expression of the cgtA gene was found to be enhanced after UV irradiation of both E. coli and V. harveyi. Moderate overexpression of cgtA resulted in higher UV resistance of E. coli wild-type and dnaQ strains, but not in uvrA, uvrB, umuC and recA mutant hosts. Overexpression of the E. coli recA gene in the V. harveyi cgtA mutant, which is very sensitive to UV light, restored the level of survival of UV-irradiated cells to the levels observed for wild-type bacteria. Moreover, the basal level of the RecA protein was lower in a temperature-sensitive cgtA mutant of E. coli than in the cgtA + strain, and contrary to wild-type bacteria, no significant increase in recA gene expression was observed after UV irradiation of this cgtA mutant. Finally, stimulation of uvrB gene transcription under these conditions was impaired in the V. harveyi cgtA mutant. All these results strongly suggest that the cgtA gene product is involved in DNA repair processes, most probably by stimulation of recA gene expression and resultant activation of RecA-dependent DNA repair pathways.


1971 ◽  
Vol 123 (4) ◽  
pp. 501-505 ◽  
Author(s):  
J. W. Dale

1. The amino acid composition of the β-lactamase from E. coli (R-1818) was determined. 2. The R-1818 β-lactamase is inhibited by formaldehyde, hydroxylamine, sodium azide, iodoacetamide, iodine and sodium chloride. 3. The Km values for benzylpenicillin, ampicillin and oxacillin have been determined by using the R-factor enzyme from different host species. The same values were obtained, irrespective of the host bacterium. 4. The molecular weight of the enzyme was found to be 44600, and was the same for all host species. 5. The relationship of R-1818 and R-GN238 β-lactamases is discussed.


2010 ◽  
Vol 76 (14) ◽  
pp. 4655-4663 ◽  
Author(s):  
Sean M. Lee ◽  
Aaron Wyse ◽  
Aaron Lesher ◽  
Mary Lou Everett ◽  
Linda Lou ◽  
...  

ABSTRACT Although mice associated with a single bacterial species have been used to provide a simple model for analysis of host-bacteria relationships, bacteria have been shown to display adaptability when grown in a variety of novel environments. In this study, changes associated with the host-bacterium relationship in mice monoassociated with Escherichia coli K-12 over a period of 1,031 days were evaluated. After 80 days, phenotypic diversification of E. coli was observed, with the colonizing bacteria having a broader distribution of growth rates in the laboratory than the parent E. coli. After 1,031 days, which included three generations of mice and an estimated 20,000 generations of E. coli, the initially homogeneous bacteria colonizing the mice had evolved to have widely different growth rates on agar, a potential decrease in tendency for spontaneous lysis in vivo, and an increased tendency for spontaneous lysis in vitro. Importantly, mice at the end of the experiment were colonized at an average density of bacteria that was more than 3-fold greater than mice colonized on day 80. Evaluation of selected isolates on day 1,031 revealed unique restriction endonuclease patterns and differences between isolates in expression of more than 10% of the proteins identified by two-dimensional electrophoresis, suggesting complex changes underlying the evolution of diversity during the experiment. These results suggest that monoassociated mice might be used as a tool for characterizing niches occupied by the intestinal flora and potentially as a method of targeting the evolution of bacteria for applications in biotechnology.


2016 ◽  
Vol 18 (2) ◽  
pp. 167
Author(s):  
Dearesty Safirah ◽  
Is Helianti ◽  
Hermin Pancasakti Kusumaningrum ◽  
Anto Budiharjo

The paper industry contributed the environment pollution due to chlor substances. Utilization of alkalothermophilic xylanase enzyme as a biocatalyst in the production of paper may become an environmentally friendly biobleaching alternative. Bacillus halodurans CM1 produces xilanase enzyme that had optimal activity at pH 9 and temperature 70°C. Previous study showed that this CM1 strains has several xilanase genes. The cloning of one of these alkalothermophiic xylanase (alkxyn) gene has been already conducted. This study aimed to clone alkxyn gene that encode alkalothermophilic xylanase enzyme from B. halodurans CM1 into Escherichia coli DH5α. Amplification of alkxyn has been carried out using primers for amplification xylanase 30 kDa. The alkxyn gene fragment was inserted into pGEM-T Easy vector and then transformed into E. coli DH5α. The results showed that the recombinant of E. coli DH5α harboring alkxyn gene from B. halodurans CM1 has been obtained. The sequences analysist based on BLAST showed that alkxyn fragment has homology (99%) with the alkaliphilic xylanase gene from Bacillus sp. 31 which encodes alkaliphilic xilanase (Genebank assession number: JF912895.1). Keywords: cloning, Bacillus halodurans CM1, xylanase, alkalothermophilic.


1999 ◽  
Vol 67 (12) ◽  
pp. 6583-6590
Author(s):  
John E. Somerville ◽  
Linda Cassiano ◽  
Richard P. Darveau

ABSTRACT A mutation in the msbB gene of Escherichia coli results in the synthesis of E. coli lipopolysaccharide (LPS) that lacks the myristic acid moiety of lipid A. Although such mutant E. coli cells and their purified LPS have a greatly reduced ability to stimulate human immune cells, a minor reduction in the mouse inflammatory response is observed. When the msbB mutation is transferred into a clinical isolate of E. coli , there is a significant loss in virulence, as assessed by lethality in BALB/c mice. When a cloned msbB gene is provided to functionally complement the msbB mutant, virulence returns, providing direct evidence that the msbB gene product is an important virulence factor in a murine model of E. coli pathogenicity. In the genetic background of the clinical E. coli isolate, the msbB mutation also results in filamentation of the cells at 37°C but not at 30°C, a reduction in the level of the K1 capsule, an increase in the level of complement C3 deposition, and an increase in both opsonic and nonopsonic phagocytosis of the msbB mutant, phenotypes that can help to explain the loss in virulence. The demonstration that the inhibition of msbB gene function reduces the virulence of E. coli in a mouse infection model warrants further investigation of the msbB gene product as a novel target for antibiotic therapy.


2016 ◽  
Vol 198 (20) ◽  
pp. 2803-2809 ◽  
Author(s):  
Ariel Rangel ◽  
Susan M. Steenbergen ◽  
Eric R. Vimr

ABSTRACTThe sialic acids (N-acylneuraminates) are a group of nine-carbon keto-sugars existing mainly as terminal residues on animal glycoprotein and glycolipid carbohydrate chains. Bacterial commensals and pathogens exploit host sialic acids for nutrition, adhesion, or antirecognition, whereN-acetyl- orN-glycolylneuraminic acids are the two predominant chemical forms of sialic acids. Each form may be modified by acetyl esters at carbon position 4, 7, 8, or 9 and by a variety of less-common modifications. Modified sialic acids produce challenges for colonizing bacteria, because the chemical alterations toN-acetylneuraminic acid (Neu5Ac) confer increased resistance to sialidase and aldolase activities essential for the catabolism of host sialic acids. Bacteria withO-acetyl sialate esterase(s) utilize acetylated sialic acids for growth, thereby gaining a presumed metabolic advantage over competitors lacking this activity. Here, we demonstrate the esterase activity ofEscherichia coliNanS after purifying it as a C-terminal HaloTag fusion. Using a similar approach, we show thatE. colistrain O157:H7 Stx prophage or prophage remnants invariably include paralogs ofnanSoften located downstream of the Shiga-like toxin genes. These paralogs may include sequences encoding N- or C-terminal domains of unknown function where the NanS domains can act as sialateO-acetyl esterases, as shown by complementation of anE. colistrain K-12nanSmutant and the unimpaired growth of anE. coliO157nanSmutant onO-acetylated sialic acid. We further demonstrate thatnanShomologs inStreptococcusspp. also encode active esterase, demonstrating an unexpected diversity of bacterial sialateO-acetyl esterase.IMPORTANCEThe sialic acids are a family of over 40 naturally occurring 9-carbon keto-sugars that function in a variety of host-bacterium interactions. These sugars occur primarily as terminal carbohydrate residues on host glycoproteins and glycolipids. Available evidence indicates that diverse bacterial species use host sialic acids for adhesion or as sources of carbon and nitrogen. Our results show that the catabolism of the diacetylated form of host sialic acid requires a specialized esterase, NanS. Our results further show thatnanShomologs exist in bacteria other thanEscherichia coli, as well as part of toxigenicE. coliprophage. The unexpected diversity of these enzymes suggests new avenues for investigating host-bacterium interactions. Therefore, these original results extend our previous studies ofnanSto include mucosal pathogens, prophage, and prophage remnants. This expansion of thenanSsuperfamily suggests important, although as-yet-unknown, functions in host-microbe interactions.


2009 ◽  
Vol 72 (2) ◽  
pp. 241-250 ◽  
Author(s):  
ERICA A. ROZEMA ◽  
TYLER P. STEPHENS ◽  
SUSAN J. BACH ◽  
ERASMUS K. OKINE ◽  
ROGER P. JOHNSON ◽  
...  

This study compared oral and rectal administration of O157-specific bacteriophages for mitigating the fecal shedding of Escherichia coli O157 by experimentally inoculated steers. Fecal shedding of nalidixic acid–resistant (NalR) E. coli O157:H7 was monitored over 83 days after oral (ORL; 3.3 × 1011 PFU), rectal (REC; 1.5 × 1011 PFU), both oral and rectal (O+R; 4.8 × 1011 PFU), or no (CON; control) treatment with a four-strain O157-specific bacteriophage cocktail in multiple doses. Bacteriophages were enumerated by plaque assay, and NalR E. coli O157:H7 by direct plating on sorbitol MacConkey agar supplemented with cefixime, potassium tellurite, and nalidixic acid. Orally treated steers produced the fewest NalR E. coli O157:H7 culture-positive samples (P < 0.06) compared with REC and O+R steers, but this number was only nominally lower (P = 0.26) than that for the CON steers. The overall mean shedding level (log CFU per gram of feces) was higher for REC steers (P < 0.10) than for steers of the other treatment groups. Despite the shedding of higher mean bacteriophage levels (log PFU per gram of feces) by ORL and O+R than by CON and REC steers, there was no difference (P > 0.05) in the number of E. coli O157–positive samples among treatments. Bacteriophage was isolated from CON steers, indicating that these steers acquired the bacteriophage from the environment and shed the phage at a level similar to that of REC steers (P = 0.39). Continuous bacteriophage therapy may be an efficacious method for mitigating shedding of E. coli O157:H7 in cattle, providing that the host bacterium does not develop resistance. This therapy may be especially advantageous if nontreated cattle can acquire this biocontrol agent from the feedlot environment.


1998 ◽  
Vol 66 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Ravi P. Anantha ◽  
Kelly D. Stone ◽  
Michael S. Donnenberg

ABSTRACT Adherence of enteropathogenic Escherichia coli (EPEC) to epithelial cells is dependent on a type IV fimbria, termed the bundle-forming pilus (BFP). A cluster of 14 genes is required for expression of BFP. The eighth gene in the cluster, bfpF, encodes a putative nucleotide-binding protein which resembles the PilT protein of Pseudomonas aeruginosa. It has been proposed that PilT is required for the retraction of the P. aeruginosa pilus, which results in twitching motility. To test the role of BfpF in BFP function and EPEC pathogenesis, two different mutations were constructed in the bfpF gene, one in the cloned gene cluster in a laboratory E. coli strain and one in wild-type EPEC. Neither mutation affected prepilin synthesis, leader sequence processing, or pilus biogenesis. However, both mutations resulted in increased localized adherence. In addition, the EPECbfpF mutant displayed increased aggregation. The EPECbfpF mutant was not deficient in attaching and effacing activity or invasion capacity. These results suggest that BfpF decreases aggregation and adherence by EPEC but that subsequent steps in EPEC pathogenesis do not require this protein.


Genetics ◽  
1988 ◽  
Vol 120 (3) ◽  
pp. 657-665
Author(s):  
F W Pons ◽  
U Neubert ◽  
P Müller

Abstract Among eight strains carrying acridine-induced mutations in hisH, five which mapped at four different sites in the promoter-distal region of the gene showed His+ phenotypes on media containing a purine. By complementation analysis, hisH enzyme was shown to be required for growth on purines. Purine-sensitive His+ revertants of strains able to grow on purines carried second-site mutations which in one case could be shown to map in hisG. Strains able to grow on purines were able to grow on 2-thiazolyl-DL-alanine, too. We conclude that frameshift mutations in the promoter-distal part of the hisH gene of E. coli do not completely abolish the activity of the gene product.


Sign in / Sign up

Export Citation Format

Share Document