Isolation and characterization of a mutator strain of Streptomyces ambofaciens ATCC23877 exhibiting an increased level of genetic instability

1996 ◽  
Vol 42 (6) ◽  
pp. 562-570 ◽  
Author(s):  
Dominique Vandewiele ◽  
Jean-Nicolas Volff ◽  
Bertrand Aigle ◽  
Jean-Marc Simonet ◽  
Bernard Decaris

In Streptomyces ambofaciens ATCC23877, 0.7% of pigment-defective mutants (Pig−) can be observed in the progeny of wild-type colonies. A mutator (Mut−) strain was isolated from the offspring of the wild-type strain. The Mut− strain produced colonies that sported nonpigmented papillae. Furthermore, the frequency of Pig− colonies obtained in the progeny of this strain was fivefold higher than in the wild-type strain. This strain showed the same level of sensitivity to ultraviolet light and mitomycin C as the wild-type strain. This Mut− phenotype was found to be reversible at high frequency (3 × 10−3). Genomic analysis using pulsed-field gel electrophoresis (PFGE) showed that the Pig− mutants arisen from the Mut− strain were less frequently rearranged (32% were deleted) compared with the mutants arising from the wild type (59% were deleted). Moreover, the Pig− papillae mutants possessed no visible rearrangement as revealed by PFGE analyses.Key words: Streptomyces, genetic instability, mutator strain, papillae.

1998 ◽  
Vol 180 (10) ◽  
pp. 2676-2681 ◽  
Author(s):  
Jeroen L. A. Pennings ◽  
Jan T. Keltjens ◽  
Godfried D. Vogels

ABSTRACT By using random mutagenesis and enrichment by chemostat culturing, we have developed mutants of Methanobacterium thermoautotrophicum that were unable to grow under hydrogen-deprived conditions. Physiological characterization showed that these mutants had poorer growth rates and growth yields than the wild-type strain. The mRNA levels of several key enzymes were lower than those in the wild-type strain. A fed-batch study showed that the expression levels were related to the hydrogen supply. In one mutant strain, expression of both methyl coenzyme M reductase isoenzyme I and coenzyme F420-dependent 5,10-methylenetetrahydromethanopterin dehydrogenase was impaired. The strain was also unable to form factor F390, lending support to the hypothesis that the factor functions in regulation of methanogenesis in response to changes in the availability of hydrogen.


1983 ◽  
Vol 41 (3) ◽  
pp. 271-286 ◽  
Author(s):  
A. M. Forsthoefel ◽  
N. C. Mishra

SUMMARYIsolation and characterization of five new nuclease (nuc) deficient mutants ofNeurosporahave been described. The new mutants are unable to utilize nucleic acids as the sole phosphorus source and possess growth characteristics similar to thosenuc(nuc-1andnuc-2) mutants described previously. Two new mutants (nuc-4andnuc-5) were able to use RNA or predigested DNA (but not intact DNA) as phosphorus source and showed temperature sensitive growth at 37 °C. Based on the data from complementation and genetic analyses the five new nuc mutants (nuc-3, nuc-4, nuc-5, nuc-6andnuc-7) were found nonallelic to each other and to previously describednuc(nuc-1andnuc-2) mutants; the newnucmutants mapped to the right ofarg-12on linkage group II. On biochemical analyses, thesenucmutants were found to possess a lower level of extracellular nucleases and alkaline phosphatase as compared to the wild type strain. The ds DNase activity of the new mutants was only about 2–12% of that of the wild type strain; thus, the low level of these extracellular enzymes in thenucmutants causes their inability to utilize nucleic acids as the sole phosphorus source. Wild type levels of these enzymes were restored in the complementing heterokaryons capable of full growth on the DNA medium. Data from intercrosses, mutagen sensitivity and spontaneous mutation-frequency studies (as discussed in a subsequent paper) indicated the involvement of thenucgenes in DNA repair and recombination.


2001 ◽  
Vol 69 (9) ◽  
pp. 5943-5948 ◽  
Author(s):  
Jong-Jin Fan ◽  
Chung-Ping Shao ◽  
Ya-Chi Ho ◽  
Chun-Keung Yu ◽  
Lien-I Hor

ABSTRACT We isolated a Vibrio vulnificus mutant that was deficient in both metalloprotease and cytolysin by allelic exchange. The virulence of this mutant in mice and its cytotoxicity for HEp-2 cells were comparable to those of the wild-type strain, indicating that neither factor was essential for these properties. The cytolysin, but not the protease, seemed to be important for causing damage in the alimentary tract of the mice.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Microbiology ◽  
2003 ◽  
Vol 149 (10) ◽  
pp. 2901-2908 ◽  
Author(s):  
Youko Sakayori ◽  
Mizuho Muramatsu ◽  
Satoshi Hanada ◽  
Yoichi Kamagata ◽  
Shinichi Kawamoto ◽  
...  

The emergence and spread of mutants resistant to bacteriocins would threaten the safety of using bacteriocins as food preservatives. To determine the physiological characteristics of resistant mutants, mutants of Enterococcus faecium resistant to mundticin KS, a class IIa bacteriocin, were isolated. Two types of mutant were found that had different sensitivities to other antimicrobial agents such as nisin (class I) and kanamycin. Both mutants were resistant to mundticin KS even in the absence of Mg2+ ions. The composition of unsaturated fatty acids in the resistant mutants was significantly increased in the presence of mundticin KS. The composition of the phospholipids in the two resistant mutants also differed from those in the wild-type strain. The putative zwitterionic amino-containing phospholipid in both mutants significantly increased, whereas amounts of phosphatidylglycerol and cardiolipin decreased. These changes in membrane structure may influence resistance of enterococci to class IIa and class I bacteriocins.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Eduard Melief ◽  
Shilah A. Bonnett ◽  
Edison S. Zuniga ◽  
Tanya Parish

ABSTRACT The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 535-542 ◽  
Author(s):  
B A Kunz ◽  
M G Peters ◽  
S E Kohalmi ◽  
J D Armstrong ◽  
M Glattke ◽  
...  

Abstract Defects in the RAD52 gene of the yeast Saccharomyces cerevisiae confer a mutator phenotype. To characterize this effect in detail, a collection of 238 spontaneous SUP4-o mutations arising in a strain having a disrupted RAD52 gene was analyzed by DNA sequencing. The resulting mutational spectrum was compared to that derived from an examination of 222 spontaneous mutations selected in a nearisogenic wild-type (RAD52) strain. This comparison revealed that the mutator phenotype was associated with an increase in the frequency of base-pair substitutions. All possible types of substitution were detected but there was a reduction in the relative fraction of A.T----G.C transitions and an increase in the proportion of G.C----C.G transversions. These changes were sufficient to cause a twofold greater preference for substitutions at G.C sites in the rad52 strain despite a decrease in the fraction of G.C----T.A transversions. There were also considerable differences between the distributions of substitutions within the SUP4-o gene. Base-pair changes occurred at fewer sites in the rad52 strain but the mutated sites included several that were not detected in the RAD52 background. Only two of the four sites that were mutated most frequently in the rad52 strain were also prominent in the wild-type strain and mutation frequencies at almost all sites common to both strains were greater for the rad52 derivative. Although single base-pair deletions occurred in the two strains with similar frequencies, several classes of mutation that were recovered in the wild-type background including multiple base-pair deletions, insertions of the yeast transposable element Ty, and more complex changes, were not detected in the rad52 strain.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Author(s):  
Changle Zhao ◽  
Yinping Wan ◽  
Xiaojie Cao ◽  
Huili Zhang ◽  
Xin Bao

Abstract Background The microbial synthesis of pyrroloquinoline quinone (PQQ) and Coenzyme Q10 (CoQ10) remains the most promising industrial production route. Methylobacterium has been used to generate PQQ and other value-added chemicals from cheap carbon feedstocks.However, the low PQQ and CoQ10 production capacity of the Methylobacterium strains is a major limitation The regulation mechanism for PQQ and CoQ10 biosynthesis in this strain has also not been fully elucidated. Results Methylobacterium sp. CLZ strain was isolated from soil contaminated with chemical wastewater, which can simultaneously produce PQQ, CoQ10, and carotenoids by using cheap methanol as carbon source. We investigated a mutant strain NI91, which increased the PQQ and CoQ10 yield by 72.44% and 59.80%, respectively. Whole-genome sequencing of NI91 and wild-type strain CLZ revealed that both contain a 5.28 Mb chromosome. The comparative genomic analysis and validation study revealed that a significant increase in biomass and PQQ production was associated with the base mutations in the methanol dehydrogenase (MDH) synthesis genes, mxaD and mxaJ. The significant increase in CoQ10 production may be associated with the base mutations in dxs gene, a key gene in the MEP/DOXP pathway. Conclusions A PQQ producing strain that simultaneously produces CoQ10 and carotenoids was selected and after ANI analysis, named as Methylobacterium sp. CLZ. After random mutagenesis of this strain, we obtained NI91 strain, which showed increased production of PQQ and CoQ10. Based on comparative genomic analysis of the whole genome of mutant strain NI91 and wild-type strain CLZ, a total of 270 SNPs and InDels events were detected, which provided a reference for subsequent research. The mutations in mxaD, mxaJ and dxs genes may be related to the high yield of PQQ and CoQ10. These findings will enhance our understanding of the PQQ and CoQ10 over-production mechanism in Methylobacterium sp. NI91 at the genomic level. It will also provide useful clues for strain engineering in order to improve the PQQ and CoQ10 production.


1999 ◽  
Vol 181 (14) ◽  
pp. 4397-4403 ◽  
Author(s):  
Casper Jørgensen ◽  
Gert Dandanell

ABSTRACT In this work, the LysR-type protein XapR has been subjected to a mutational analysis. XapR regulates the expression of xanthosine phosphorylase (XapA), a purine nucleoside phosphorylase inEscherichia coli. In the wild type, full expression of XapA requires both a functional XapR protein and the inducer xanthosine. Here we show that deoxyinosine can also function as an inducer in the wild type, although not to the same extent as xanthosine. We have isolated and characterized in detail the mutants that can be induced by other nucleosides as well as xanthosine. Sequencing of the mutants has revealed that two regions in XapR are important for correct interactions between the inducer and XapR. One region is defined by amino acids 104 and 132, and the other region, containing most of the isolated mutations, is found between amino acids 203 and 210. These regions, when modelled into the three-dimensional structure of CysB from Klebsiella aerogenes, are placed close together and are most probably directly involved in binding the inducer xanthosine.


Sign in / Sign up

Export Citation Format

Share Document