Epigenetic tête-à-tête: the bilateral relationship between chromatin modifications and DNA methylationThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process.

2006 ◽  
Vol 84 (4) ◽  
pp. 463-466 ◽  
Author(s):  
Ana C. D’Alessio ◽  
Moshe Szyf

The epigenome, which comprises chromatin, associated proteins, and the pattern of covalent modification of DNA by methylation, sets up and maintains gene expression programs. It was originally believed that DNA methylation was the dominant reaction in determining the chromatin structure. However, emerging data suggest that chromatin can affect DNA methylation in both directions, triggering either de novo DNA methylation or demethylation. These events are particularly important for the understanding of cellular transformation, which requires a coordinated change in gene expression profiles. While genetic alterations can explain some of the changes, the important role of epigenetic reprogramming is becoming more and more evident. Cancer cells exhibit a paradoxical coexistence of global loss of DNA methylation with regional hypermethylation.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Katherine R. Dobbs ◽  
Paula Embury ◽  
Emmily Koech ◽  
Sidney Ogolla ◽  
Stephen Munga ◽  
...  

Abstract Background Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. Results We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. Conclusions These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.


2020 ◽  
Vol 11 ◽  
Author(s):  
Nitish Kumar Mishra ◽  
Meng Niu ◽  
Siddesh Southekal ◽  
Prachi Bajpai ◽  
Amr Elkholy ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2996-2996
Author(s):  
Sanggyu Lee ◽  
Jianjun Chen ◽  
Goulin Zhou ◽  
Run Shi ◽  
Masha Kocherginsky ◽  
...  

Abstract Chromosome translocations are among the most common genetic abnormalities in human leukemia. The abnormally expressed genes from each translocation can be used to identify specific markers for clinical diagnosis of each translocation. Microarrays have identified genes differentially expressed in different translocations but the results between laboratories are not always compatible. We used SAGE to quantitate gene expression in bone marrow(BM) samples from 22 patients with four types of AML, [de novo AML M2 with t(8;21), AML M3 or M3V with t(15;17), AML M4Eo with inv(16), AML M5 with t(9;11) or secondary t(9;11)].We made SAGE libraries from CD15+ leukemic myeloid progenitor cells, collecting over 106 SAGE tags, of which 209,486 were unique tags; 136,010 were known genes and ESTs, and 73,476 were novel transcripts. SAGE tags for further analysis were selected based on a 5-fold difference between patient’s samples and normal CD15+ BM; they were also statistically significantly different at the 5% level. Using these strict criteria, we identified 2,381 unique tags, of which 2,053 were known genes and ESTs, and 328 were novel transcripts that were either specific for each translocation or were common(55) SAGE tags for all 4 translocations. The major change in all translocations was a decrease in expression in leukemia cells compared with normal cells; the decrease was least in the t(8;21) cells. Changes in expression of these known genes, which fall into different gene ontology functional categories, varied by translocation. Those associated with macromolecular biosynthesis, transport and transcription were most altered in the t(8;21); those related to defense response and apoptosis were altered in the t(15;17); cell proliferation genes were most affected by the t(9;11). From this analysis, we identified the functional molecular signature of each translocation. We designed a custom microarray to validate our SAGE data analysis. Our initial microarray contained 349 probes including 212 known genes, 61 ESTs, 28 novel sequences based on our data and 48 genes reported by others. We have now included 65 additional probes that appeared to be correlated with survival. Using 63 samples with the four translocations [16 inv(16), 4 t(9;11), 20 t(15;17), 4 t(8;21) and 19 other translocations], we are validating which genes provide a robust, reproducible “fingerprint” for each translocation, for all translocations, and which ones provide reliable information related to prognosis and survival. Our results will provide new insights into genes that collaborate with each translocation to lead to a fully leukemic phenotype as well as which genes appear to provide valid prognostic information.


Endocrinology ◽  
2004 ◽  
Vol 145 (10) ◽  
pp. 4513-4521 ◽  
Author(s):  
Antonella Maffei ◽  
Zhuoru Liu ◽  
Piotr Witkowski ◽  
Federica Moschella ◽  
Giovanna Del Pozzo ◽  
...  

Abstract The purpose of our study was to identify transcripts specific for tissue-restricted, membrane-associated proteins in human islets that, in turn, might serve as markers of healthy or diseased islet cell masses. Using oligonucleotide chips, we obtained gene expression profiles of human islets for comparison with the profiles of exocrine pancreas, liver, and kidney tissue. As periislet presence of type 1 interferon is associated with the development of type 1 diabetes, the expression profile of human islets treated ex vivo with interferon-α2β (IFNα2β) was also determined. A set of genes encoding transmembrane- or membrane-associated proteins with novel islet-restricted expression was resolved by determining the intersection of the islet set with the complement of datasets obtained from other tissues. Under the influence of IFNα2β, the expression levels of transcripts for several of the identified gene products were up- or down-regulated. One of the islet-restricted gene products identified in this study, vesicular monoamine transporter type 2, was shown to bind [3H]dihydrotetrabenazine, a ligand with derivatives suitable for positron emission tomography imaging. We report here the first comparison of gene expression profiles of human islets with other tissues and the identification of a target molecule with possible use in determining islet cell masses.


2002 ◽  
Vol 76 (12) ◽  
pp. 6244-6256 ◽  
Author(s):  
Joo Wook Ahn ◽  
Kenneth L. Powell ◽  
Paul Kellam ◽  
Dagmar G. Alber

ABSTRACT Gammaherpesviruses are associated with a number of diseases including lymphomas and other malignancies. Murine gammaherpesvirus 68 (MHV-68) constitutes the most amenable animal model for this family of pathogens. However experimental characterization of gammaherpesvirus gene expression, at either the protein or RNA level, lags behind that of other, better-studied alpha- and beta-herpesviruses. We have developed a cDNA array to globally characterize MHV-68 gene expression profiles, thus providing an experimental supplement to a genome that is chiefly annotated by homology. Viral genes started to be transcribed as early as 3 h postinfection (p.i.), and this was followed by a rapid escalation of gene expression that could be seen at 5 h p.i. Individual genes showed their own transcription profiles, and most genes were still being expressed at 18 h p.i. Open reading frames (ORFs) M3 (chemokine-binding protein), 52, and M9 (capsid protein) were particularly noticeable due to their very high levels of expression. Hierarchical cluster analysis of transcription profiles revealed four main groups of genes and allowed functional predictions to be made by comparing expression profiles of uncharacterized genes to those of genes of known function. Each gene was also categorized according to kinetic class by blocking de novo protein synthesis and viral DNA replication in vitro. One gene, ORF 73, was found to be expressed with α-kinetics, 30 genes were found to be expressed with β-kinetics, and 42 genes were found to be expressed with γ-kinetics. This fundamental characterization furthers the development of this model and provides an experimental basis for continued investigation of gammaherpesvirus pathology.


2019 ◽  
Author(s):  
Nikhil Jain ◽  
Tamar Shahal ◽  
Tslil Gabrieli ◽  
Noa Gilat ◽  
Dmitry Torchinsky ◽  
...  

AbstractDNA methylation patterns create distinct gene expression profiles. These patterns are maintained after cell division, thus enabling the differentiation and maintenance of multiple cell types from the same genome sequence. The advantage of this mechanism for transcriptional control is that chemical-encoding allows to rapidly establish new epigenetic patterns “on-demand” through enzymatic methylation and de-methylation of DNA. Here we show that this feature is associated with the fast response of macrophages during their pro-inflammatory activation. By using a combination of mass spectroscopy and single-molecule imaging to quantify global epigenetic changes in the genomes of primary macrophages, we followed three distinct DNA marks (methylated, hydroxymethylated and unmethylated), involved in establishing new DNA methylation patterns during pro-inflammatory activation. The observed epigenetic modulation together with gene expression data generated for the involved enzymatic machinery, may suggest that de-methylation upon LPS-activation starts with oxidation of methylated CpGs, followed by excision-repair of these oxidized bases and their replacement with unmodified cytosine.


2017 ◽  
Vol 69 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Yong Peng ◽  
Huiqin Ma ◽  
Shangwu Chen

Lycium ruthenicum Murr., which belongs to the family Solanaceae, is a resource plant for Chinese traditional medicine and nutraceutical foods. In this study, RNA sequencing was applied to obtain raw reads of L. ruthenicum fruit at different stages of ripening, and a de novo assembly of its sequence was performed. Approximately 52.45 million 100-bp paired-end raw reads were generated from the samples by deep RNA-seq analysis. These short reads were assembled to obtain 164814 contigs, and the contigs were assembled into 84968 non-redundant unigenes using the Trinity method. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group and KEGG (Kyoto Encyclopedia of Genes and Genomes)pathway terms. Digital gene expression analysis was applied to compare gene-expression patterns at different fruit developmental stages. These results contribute to existing sequence resources for Lycium spp. during the fruit-ripening stages, which is valuable for further functional studies of genes involved in L. ruthenicum fruit nutraceutical quality.


2019 ◽  
Author(s):  
Matthew D. Barberio ◽  
Evan P. Nadler ◽  
Samantha Sevilla ◽  
Rosemary Lu ◽  
Brennan Harmon ◽  
...  

AbstractBackgroundEpigenetic changes in visceral adipose tissue (VAT) with obesity and their effects on gene expression are poorly understood, especially during emergent obesity in youth. The current study tested the hypothesis that methylation and gene expression profiles of key growth factor and inflammatory pathways such as PI3K/AKT signaling are altered in VAT from obese compared to non-obese youth.MethodsVAT samples from adolescent females grouped as Lean (L; n=15; age=15±3 yrs, BMI=21.9±3.0 kg/m2) or Obese (Ob; n=15, age=16±2 yrs, BMI=45.8±9.8 kg/m2) were collected. Global methylation (n=20) and gene expression (N=30) patterns were profiled via microarray and interrogated for differences between groups by ANCOVA (p<0.05), followed by biological pathway analysis.ResultsOverlapping differences in methylation and gene expression in 317 genes were found in VAT from obese compared to lean groups. PI3K/AKT Signaling (p=1.83×10−6; 10/121 molecules in dataset/pathway) was significantly overrepresented in Ob VAT according to pathway analysis. mRNA upregulations in the PI3K/AKT Signaling Pathway genes TFAM (p=0.03; Fold change=1.8) and PPP2R5C (p=0.03, FC=2.6) were confirmed via qRT-PCR.ConclusionOur analyses show obesity-related differences in DNA methylation and gene expression in visceral adipose tissue of adolescent females. Specifically, we identified methylation site/gene expression pairs differentially regulated and mapped these differences to PI3K/AKT signaling, suggesting that PI3K/AKT signaling pathway dysfunction in obesity may be driven in part by obesity-related changes in DNA methylation.


Sign in / Sign up

Export Citation Format

Share Document