Characterization, chromosomal mapping, and expression of different ubiquitin fusion protein genes in tissues from control and heat-shocked maize seedlings

1996 ◽  
Vol 74 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Ling Liu ◽  
J. Roger H. Frappier ◽  
Karen d'Ailly ◽  
Burr G. Atkinson ◽  
Daniel S. Maillet ◽  
...  

Organisms possess at least two multigene families of ubiquitins: the polyubiquitins, with few to several repeat units, which encode a ubiquitin monomer, and the ubiquitin fusion (or extension) protein genes, which encode a single ubiquitin monomer and a specific protein. This report provides details about two ubiquitin fusion protein genes in maize referred to as MubG7 (uwo 1) and MubG10 (uwo 2). Each has one nearly identical ubiquitin coding unit fused without an intervening nucleotide to an unrelated, 237-nucleotide sequence that encodes for a 79 amino acid protein. The derived amino acid sequences of the two fusion proteins show that they differ by five amino acids (substitution by either a serine or threonine). MubG7 maps to chromosome 8L162 and MubG10 maps to chromosome 1L131. Analyses of the role(s) of these genes in response to heat shock (1 h at 42.5 °C) reveal that the level of these fusion protein mRNAs in the radicles or plumules from 2-day-old seedlings does not change; however, heat shock does cause a marked reduction in the accumulation of these same gene-specific mRNAs in the radicles and plumules of 5-day-old seedlings. These data confirm the suggestion from our earlier work that there is precise modulation, in a gene-specific manner, of the response to developmental as well as environmental signals.Key words: ubiquitin, ubiquitin extension (or fusion) protein, maize, heat shock, heat shock proteins, gene expression, chromosome map.

2005 ◽  
Vol 187 (15) ◽  
pp. 5067-5074 ◽  
Author(s):  
Daisuke Kasai ◽  
Eiji Masai ◽  
Keisuke Miyauchi ◽  
Yoshihiro Katayama ◽  
Masao Fukuda

ABSTRACT Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate (PCA) and 3-O-methylgallate (3MGA) in reactions with the tetrahydrofolate-dependent O-demethylases LigM and DesA, respectively. PCA is further degraded via the PCA 4,5-cleavage pathway, whereas 3MGA is metabolized via three distinct pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and 3MGA O-demethylase (LigM) are involved. In the 3MGA O-demethylation pathway, LigM converts 3MGA to gallate, and the resulting gallate appears to be degraded by a dioxygenase other than LigAB or DesZ. Here, we isolated the gallate dioxygenase gene, desB, which encodes a 418-amino-acid protein with a molecular mass of 46,843 Da. The amino acid sequences of the N-terminal region (residues 1 to 285) and the C-terminal region (residues 286 to 418) of DesB exhibited ca. 40% and 27% identity with the sequences of the PCA 4,5-dioxygenase β and α subunits, respectively. DesB produced in Escherichia coli was purified and was estimated to be a homodimer (86 kDa). DesB specifically attacked gallate to generate 4-oxalomesaconate as the reaction product. The Km for gallate and the V max were determined to be 66.9 ± 9.3 μM and 42.7 ± 2.4 U/mg, respectively. On the basis of the analysis of various SYK-6 mutants lacking the genes involved in syringate degradation, we concluded that (i) all of the three-ring cleavage dioxygenases are involved in syringate catabolism, (ii) the pathway involving LigM and DesB plays an especially important role in the growth of SYK-6 on syringate, and (iii) DesB and LigAB are involved in gallate degradation.


1999 ◽  
Vol 65 (12) ◽  
pp. 5546-5553 ◽  
Author(s):  
Kazuhiro Iwashita ◽  
Tatsuya Nagahara ◽  
Hitoshi Kimura ◽  
Makoto Takano ◽  
Hitoshi Shimoi ◽  
...  

ABSTRACT We cloned the genomic DNA and cDNA of bglA, which encodes β-glucosidase in Aspergillus kawachii, based on a partial amino acid sequence of purified cell wall-bound β-glucosidase CB-1. The nucleotide sequence of the cloned bglA gene revealed a 2,933-bp open reading frame with six introns that encodes an 860-amino-acid protein. Based on the deduced amino acid sequence, we concluded that the bglA gene encodes cell wall-bound β-glucosidase CB-1. The amino acid sequence exhibited high levels of homology with the amino acid sequences of fungal β-glucosidases classified in subfamily B. We expressed the bglA cDNA inSaccharomyces cerevisiae and detected the recombinant β-glucosidase in the periplasm fraction of the recombinant yeast.A. kawachii can produce two extracellular β-glucosidases (EX-1 and EX-2) in addition to the cell wall-bound β-glucosidase.A. kawachii in which the bglA gene was disrupted produced none of the three β-glucosidases, as determined by enzyme assays and a Western blot analysis. Thus, we concluded that thebglA gene encodes both extracellular and cell wall-bound β-glucosidases in A. kawachii.


1987 ◽  
Vol 33 (2) ◽  
pp. 162-168 ◽  
Author(s):  
M. Kapoor ◽  
J. Lewis

Neurospora crassa cells, grown at 28 °C for 14 h and heat shocked at 48 °C for 45 min, showed the synthesis of 11 heat-shock proteins (nHSPs) in one-dimensional electrophoretic profiles. Treatment with sodium arsenite induced the synthesis of two heat-shock proteins, nHSP70 and nHSP80, and a third, arsenite-specific protein, not induced by hyperthermia. Exposure to 0.5 or 1.0 mM H2O2 led to the induction of two of the heat-inducible nHSP70 family polypeptides. Sodium selenite, used in concert with H2O2, and arsenite were observed to modulate that heat-shock response. In addition, H2O2, menadione, and the glutathione depleters diamide and diethyl maleate promoted the synthesis of another protein, designated oxidative stress-responsive protein (OSP). A DNA-binding protein, specific for Neurospora DNA, was also demonstrated in extracts of heat-shocked cells.


1985 ◽  
Vol 5 (12) ◽  
pp. 3417-3428 ◽  
Author(s):  
R T Nagao ◽  
E Czarnecka ◽  
W B Gurley ◽  
F Schöffl ◽  
J L Key

Soybeans, Glycine max, synthesize a family of low-molecular-weight heat shock (HS) proteins in response to HS. The DNA sequences of two genes encoding 17.5- and 17.6-kilodalton HS proteins were determined. Nuclease S1 mapping of the corresponding mRNA indicated multiple start termini at the 5' end and multiple stop termini at the 3' end. These two genes were compared with two other soybean HS genes of similar size. A comparison among the 5' flanking regions encompassing the presumptive HS promoter of the soybean HS-protein genes demonstrated this region to be extremely homologous. Analysis of the DNA sequences in the 5' flanking regions of the soybean genes with the corresponding regions of Drosophila melanogaster HS-protein genes revealed striking similarity between plants and animals in the presumptive promoter structure of thermoinducible genes. Sequences related to the Drosophila HS consensus regulatory element were found 57 to 62 base pairs 5' to the start of transcription in addition to secondary HS consensus elements located further upstream. Comparative analysis of the deduced amino acid sequences of four soybean HS proteins illustrated that these proteins were greater than 90% homologous. Comparison of the amino acid sequence for soybean HS proteins with other organisms showed much lower homology (less than 20%). Hydropathy profiles for Drosophila, Xenopus, Caenorhabditis elegans, and G. max HS proteins showed a similarity of major hydrophilic and hydrophobic regions, which suggests conservation of functional domains for these proteins among widely dispersed organisms.


1996 ◽  
Vol 317 (1) ◽  
pp. 187-194 ◽  
Author(s):  
Stanislaw ZOLNIEROWICZ ◽  
Christine VAN HOOF ◽  
Nataša ANDJELKOVIĆ ◽  
Peter CRON ◽  
Ilse STEVENS ◽  
...  

Two protein phosphatase 2A (PP2A) holoenzymes were isolated from rabbit skeletal muscle containing, in addition to the catalytic and PR65 regulatory subunits, proteins of apparent molecular masses of 61 and 56 kDa respectively. Both holoenzymes displayed low basal phosphorylase phosphatase activity, which could be stimulated by protamine to an extent similar to that of previously characterized PP2A holoenzymes. Protein microsequencing of tryptic peptides derived from the 61 kDa protein, termed PR61, yielded 117 residues of amino acid sequence. Molecular cloning by enrichment of specific mRNAs, followed by reverse transcription–PCR and cDNA library screening, revealed that this protein exists in multiple isoforms encoded by at least three genes, one of which gives rise to several splicing variants. Comparisons of these sequences with the available databases identified one more human gene and predicted another based on a rabbit cDNA-derived sequence, thus bringing the number of genes encoding PR61 family members to five. Peptide sequences derived from PR61 corresponded to the deduced amino acid sequences of either α or β isoforms, indicating that the purified PP2A preparation was a mixture of at least two trimers. In contrast, the 56 kDa subunit (termed PR56) seems to correspond to the ϵ isoform of PR61. Several regulatory subunits of PP2A belonging to the PR61 family contain consensus sequences for nuclear localization and might therefore target PP2A to nuclear substrates.


High-temperature stress or heat shock induces the vigorous synthesis of heat-shock proteins in many organisms including the higher plants. This response has been implicated in the acquisition of thermotolerance. The biological importance of a group of low-molecular-mass proteins in the response of plants is indicated by the conservation of the corresponding genes. The steady-state levels of mRNAs for these proteins shift from undetectable levels at normal temperature to about 20 000 molecules per gene in the cell after heat shock. The analysis of ‘run-off’ transcripts from isolated soybean nuclei suggests a transcriptional control of gene expression. The DNA sequence analysis of soybean heat-shock genes revealed a conservation of promoter sequences and 5'-upstream elements. A comparison of the deduced amino acid sequences of polypeptides showed a conservation of structural features in heat-shock proteins between plants and animals. The implication of a common regulatory concept in the heat-shock response makes genes belonging to this family (15-18 kDa proteins) in soybean favourable candidates for investigating thermoregulation of transcription. We have exploited the natural gene transfer system of Agrobacterium tumefaciens to introduce a soybean heat-shock gene into the genomes of sunflower and tobacco. The gene is thermoinducibly transcribed and transcripts are faithfully initiated in transgenic plants. Experiments are in progress to define the regulatory sequences 5'-upstream from the gene. The expression of heat-shock genes in a heterologous genetic background also provides the basis for studying the function of the proteins and their possible role in thermoprotection.


2000 ◽  
Vol 62 (9) ◽  
pp. 941-945 ◽  
Author(s):  
Yoshitsugu OCHIAI ◽  
Hideto FUKUSHI ◽  
Cai YAN ◽  
Tsuyoshi YAMAGUCHI ◽  
Katsuya HIRAI

2016 ◽  
Vol 3 (10) ◽  
pp. 160375 ◽  
Author(s):  
Fenfei Liang ◽  
Guosong Zhang ◽  
Shaowu Yin ◽  
Li Wang

Heat shock proteins (HSPs) are highly conserved molecular chaperones that play critical roles in both innate and adaptive immunity. However, little information about HSPs from marbled eel Anguilla marmorata is known. In this study, the full-length Amhsp90 (2527 bp), Amhsp70 (2443 bp) and Amhsc70 (2247 bp) were first cloned from A. marmorata , using rapid amplification of cDNA ends, containing open reading frames of 2181, 1932 and 1950 bp in length, and encoding proteins with 726, 643 and 649 amino acids, respectively. The deduced amino acid sequences of three Amhsps shared a high homology similarity with other migratory fish. Real-time fluorescent quantitative polymerase chain reaction was used to evaluate tissue-specific distribution and mRNA expression levels of three Amhsps subjected to infection with Aeromonas hydrophila . The mRNA expression of three Amhsps in eight tested tissues, namely liver, heart, muscle, gill, spleen, kidney, brain and intestine, of juvenile A. marmorata was evaluated to reveal the major expression distribution in liver, intestine, muscle and heart. After pathogen challenge treatments, mRNA transcriptions of three Amhsps revealed a significant regulation at various time points in the same tissue. All these findings suggest that Amhsps may be involved in the immune response in A. marmorata .


1991 ◽  
Vol 98 (1) ◽  
pp. 27-36
Author(s):  
S.J. Chapin ◽  
J.C. Bulinski

A polyclonal antiserum raised against a HeLa cell microtubule-associated protein of Mr 210,000 (210 kD MAP or MAP4), an abundant non-neuronal MAP, was used to isolate cDNA clones encoding MAP4 from a human fetal brain lambda gt11 cDNA expression library. The largest of these clones, pMAP4.245, contains an insert of 4.1 kb and encodes a 245 kD beta-galactosidase fusion protein. Evidence that pMAP4.245 encodes MAP4 sequences includes immunoabsorption of MAP4 antibodies with the pMAP4.245 fusion protein, as well as identity of protein sequences obtained from HeLa 210 kD MAP4 with amino acid sequences encoded by pMAP4.245. The MAP4.245 cDNA hybridizes to several large (approximately 6–9 kb) transcripts on Northern blots of HeLa cell RNA. DNA sequencing of overlapping MAP4 cDNA clones revealed a long open reading frame containing a C-terminal region with three imperfect 18-amino acid repeats; this region is homologous to a motif present in the microtubule (MT)-binding domain of two prominent neuronal MAPs, MAP2 and tau. The pMAP4.245 sequence also encoded a series of unrelated repeats, located in the MAP's projection domain, N-terminal to the MT-binding domain. MAP4.245 fusion proteins bound to MTs in vitro, while fusion proteins that contained only the projection domain repeats failed to bind specifically to MTs. Thus, the major human non-neuronal MAP resembles two neuronal MAPs in its MT-binding domain, while most of the molecule has sequences, and presumably functions, distinct from those of the neuronal MAPs.


Sign in / Sign up

Export Citation Format

Share Document