Collisional Transfer of Rotational Energy in Mixtures of Methanol with Ne, Ar, and D2

1975 ◽  
Vol 53 (23) ◽  
pp. 2617-2621
Author(s):  
S. S. Haque ◽  
R. M. Lees

Steady state microwave double resonance experiments are reported for dilute mixtures of CH3OH in excess Ne, Ar, and D2. The results for Ne and Ar are, in general, similar to previous results for He, and those for D2 to H2, with both classes of collision partners displaying a decrease in collisional transfer signal with increasing mass of the partner. A simple qualitative analysis indicates that the ratios between the rates of different types of collision-induced transitions are quite similar for the members of a class. For He, Ne, and Ar, the rate constant for Δk = 0 transitions is of the order of 8 times that for a Δk = ±1 transition, while for H2 and D2 the ratio is about 4.

1975 ◽  
Vol 53 (23) ◽  
pp. 2593-2605 ◽  
Author(s):  
R. M. Lees

The analysis of data on collisional transfer of rotational energy obtained by the technique of steady state four-level microwave double resonance is reviewed, with emphasis on the roles of the spatial degeneracies of the levels and the M dependence of their populations. Exact expressions are given for the collisional transfer signal in a general four-level system, with the level degeneracies included rigorously, and with M dependent and M independent contributions formally separated. The possible effects of the M dependence are illustrated for several test systems of CH3OH, with the use of a simplified first-order dipolar model for the collisional rate constants. Collisional transfer signals calculated with this model for a number of CH3OH systems are in reasonable relative agreement with observed values, but in poor absolute agreement. It is suggested that the latter feature may be due to neglect of higher-order transitions in the simple dipolar model.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


2021 ◽  
Author(s):  
Xueyun Wang ◽  
Xueqiao Xu ◽  
Philip B Snyder ◽  
Zeyu Li

Abstract The BOUT++ six-field turbulence code is used to simulate the ITER 11.5MA hybrid scenario and a brief comparison is made among ITER baseline, hybrid and steady-state operation (SSO) scenarios. Peeling-ballooning instabilities with different toroidal mode numbers dominate in different scenarios and consequently yield different types of ELMs. The energy loss fractions (ΔWped/Wped) caused by unmitigated ELMs in the baseline and hybrid scenarios are large (~2%) while the one in the SSO scenario is dramatically smaller (~1%), which are consistent with the features of type-I ELMs and grassy ELMs respectively. The intra ELM divertor heat flux width in the three scenarios given by the simulations is larger than the estimations for inter ELM phase based on Goldston’s heuristic drift model. The toroidal gap edge melting limit of tungsten monoblocks of divertor targets imposes constraints on ELM energy loss, giving that the ELM energy loss fraction should be smaller than 0.4%, 1.0%, and 1.2% for ITER baseline, hybrid and SSO scenarios, correspondingly. The simulation shows that only the SSO scenario with grassy ELMs may satisfy the constraint.


1989 ◽  
Vol 256 (4) ◽  
pp. R1005-R1010
Author(s):  
D. Verotta ◽  
S. L. Beal ◽  
L. B. Sheiner

A semiparametric model for analysis of pharmacokinetic (PK) and pharmacodynamic (PD) data arising from non-steady-state experiments is presented. The model describes time lag between drug concentration in a sampling compartment, e.g., venous blood (Cv), and drug effect (E). If drug concentration at the effect site (Ce) equilibrates with arterial blood concentration (Ca) slower than with Cv, a non-steady-state experiment yields E vs. Cv data describing a counterclockwise hysteresis loop. If Ce equilibrates with Ca faster than with Cv, clockwise hysteresis is observed. To model hysteresis, a parametric model is proposed linking (unobserved) Ca to Cv with elimination rate constant kappa ov and also linking Ca to Ce with elimination rate constant kappa oe. When kappa oe is greater than (or less than) kappa ov clockwise (or counterclockwise) hysteresis occurs. Given kappa oe and kappa ov, numerical (constrained) deconvolution is used to obtain the disposition function of the arterial compartment (Ha), and convolution is used to calculate Ce given Ha. The values of kappa oe and kappa ov are chosen to collapse the hysteresis loops to single curves representing the Ce-E (steady-state) concentration-response curve. Simulations, and an application to real data, are reported.


2019 ◽  
Author(s):  
Laure Brimbal ◽  
Timothy John Luke

ObjectivesStrategic questioning and disclosure of evidence are increasingly recommended as empirically-supported techniques in interviews. To date, no research has evaluated how different types of evidence (e.g., eyewitness, fingerprints) might affect interview outcome. HypothesesWe hypothesized that suspects would be more willing to make statements that contradict pieces of evidence that are perceived to be weaker and less reliable.MethodsIn Study 1, we conducted systematic and meta-analytic reviews of the literature to retrospectively assess these factors. In six experiments, we began to fill this gap by manipulating strength and reliability of evidence (Study 2, 3c, and 4a), assessing the validity of our operationalizations (Study 3a-b) and testing generalizability across operationalizations (Study 3c), and examining participants’ rationale for their responses to a qualitative analysis (Study 4b). ResultsStudy 1 found that evidence type and, hence, reliability had not been taken into account in previous research. Further, we were unable to establish if observed effects of interview tactics were moderated by the properties of the evidence used. In Study 2, we found that participants were more consistent with evidence when it was more reliable, especially when it was highly incriminating. After validating our operationalizations in studies 3a and 3b, we replicated the pattern found in Study 2 (3c and 4a), whereby those in the highly reliable condition were most consistent with the evidence, followed by those with less reliable evidence and no evidence.ConclusionsWe demonstrated that evidence properties should be considered when studying how to disclose information in an investigative interview.


2021 ◽  
Author(s):  
Hai Zhou ◽  
Haiping Wu ◽  
Jian Xu ◽  
Hongbin Fang

Abstract Origami-inspired structures and materials have shown remarkable properties and performances originating from the intricate geometries of folding. Origami folding could be a dynamic process and origami structures could possess rich dynamic characteristics under external excitations. However, the current state of dynamics of origami has mostly focused on the dynamics of a single cell. This research has performed numerical simulations on multi-stable dual-cell series Miura-Ori structures with different types of inter-cell connections based on a dynamic model that does not neglect in-plane mass. We introduce a concept of equivalent constraint stiffness k* to distinguish different types of inter-cell connections. Results of numerical simulations reveal the multi-stable dual-cell structure will exhibit a variety of complex nonlinear dynamic responses with the increasing of connection stiffness because of the deeper energy well it has. The connection stiffness has a strong effect on the steady-state dynamic responses under different excitation amplitudes and a variety of initial conditions. This effect makes us able to adjust the dynamic behaviors of dual-cell series Miura-Ori structure to our needs in a complex environment. Furthermore, the results of this research could provide us a theoretical basis for the dynamics of origami folding and serve as guidelines for designing dynamic applications of origami metastructures and metamaterials.


Author(s):  
Mathias Sta˚lek ◽  
Jo´zsef Ba´na´ti ◽  
Christophe Demazie`re

A Main Steam Line Break (MSLB) is an important transient for Pressurized Water Reactors (PWR) due to the strong positive reactivity introduced by the over-cooling of the core. Since this effect is stronger when the Moderator Temperature Coefficient (MTC) has a large amplitude, a conservative result will be obtained for a high burnup of the fuel due to the more negative MTC late in the cycle. The calculations have been performed at a cycle burnup of 12.9742 GWd/tHM. The Swedish Ringhals-3 PWR is a three loop Westinghouse design, currently with a thermal power of 3000 MW. The PARCS model has 157 fuel assemblies of 8 different types. Four different types of reflector are used. The cross sections, and kinetic data were obtained from CASMO-4 calculations, using a cross section interface developed at the department. There are 24 axial nodes, and 2×2 radial nodes for each assembly. The transient option for calculating the effect of poisoning was used. The PARCS model has been validated against steady-state measurements from Ringhals-3 of the Relative Power Fraction (RPF) and of the core criticality. The RELAP5 model has 157 channels for the core which means that there is a one to one correspondence between the thermal hydraulics model and the neutronics model. There is eight axial nodes. Originally, the intention was to have 24 axial nodes but this proved not to work because of some limitation in RELAP5. There is currently no mixing between the different channels in the core. The feedwater, and turbines are modelled as boundary conditions. The stand-alone RELAP5 model has been validated against steady state measurements from Ringhals-3. A number of different cases were considered. In the first case, both the isolation of the feedwater for the broken loop, and all the control rods were assumed to work properly. For the second case one of the control rods was assumed to be stuck. The stuck rod was located in the fuel assembly with the highest power. This rod has also one of the highest rod worths. In the final case, the feedwater control valve for the broken loop was fully open. None of the cases led to any recriticality. The increase in power for each fuel assembly was also investigated. With the control rod located in the assembly with the highest power, the maximum power increase before scram turned out to be about 25% compared to the initial power.


Author(s):  
Emmanuil Kushnir

The dynamic compliance (frequency response function - FRF) of a machine tool structure in the cutting zone under a cutting load is one of the major dynamic characteristics that define a machine’s cutting performance. The roundness and surface finish define the quality of the manufactured parts. These characteristics are developed during finishing and semi-finishing cuts. The kinowledge of machine tool dynamic compliance, defined in these steady-state cutting conditions, ensures parts quality and increase in machine tool productivity. The dynamic compliance is usually evaluated in tests, which are performed by means of hammers or vibrators (exciters). During these tests the machine does not cut and the machine components do not move relative to each other. The loads in the machine during cutting are defined by different internal and external sources that are acting in different points of the machine and in different directions. The real spectrum and frequency range of these forces is unknown. Experimental data acquired by different types of tests clearly show the difference in dynamic compliance for the same machine tool during cutting and idling. The machine tool dynamic tests performed by different types of external exciting devices do not take in consideration the real load conditions and interactions of moving components, including the cutting process itself and external sources of vibration. The existing methods of experimental evaluation of machine tool dynamic compliance during steady-state cutting condition require dynamometers to measure the cutting force and a special sensor to measure relative displacement between the cutting tool and workpiece. The FRF that is computed from these measurements represents a dynamic characteristic of the close loop system (machine structure and cutting process) and only under certain conditions may be considered as FRF of machine tool structure itself. The theory of stationary random processes allows defining the cutting conditions, under which the obtained data represent the FRF of machine tool structure, and provide estimations of random and bias errors of this evaluation. The simplified methodology of FRF estimation, based only on measurement of the spindle and tool vibration, is also presented in this paper. This methodology is used on an assembly line to obtain FRF for machine tools performance comparison and quality assurance.


1998 ◽  
Vol 120 (3) ◽  
pp. 442-452 ◽  
Author(s):  
J. Sugimura ◽  
W. R. Jones ◽  
H. A. Spikes

This paper describes a study of EHD film thickness in non-steady state contact conditions. A modification of ultrathin film interferometry is employed which is able to measure both central film thickness and film thickness profiles 50 times a second. Film thickness with two perfluoropolyethers and two mineral base oils are investigated in a number of different types of non-steady state motion, including acceleration/deceleration, stop/start and reciprocation. The results demonstrate a range of transient behaviors of EHD film whose thicknesses deviate from those in steady state conditions.


Sign in / Sign up

Export Citation Format

Share Document