scholarly journals Black holes with regular horizons in Maxwell-scalar gravity

1996 ◽  
Vol 74 (1-2) ◽  
pp. 17-28 ◽  
Author(s):  
Slava G. Turyshev

A class of exact static spherically symmetric solutions of the Einstein–Maxwell gravity coupled to a massless scalar field is obtained in the harmonic coordinates of Minkowski space-time. For each value of the coupling constant a, these solutions are characterized by a set of three parameters, the physical mass μ0, the electric charge Q0 and the scalar-field parameter k. We find that the solutions for both gravitational and electromagnetic fields are not only affected by the scalar field, but also the nontrivial coupling with matter constrains the scalar field itself. In particular, we find that the constant k differs generically from ±1/2, falling into the interval [Formula: see text]. It takes these values only for black holes or in the case when a scalar field [Formula: see text] is totally decoupled from the matter. Our results differ from those previously obtained in that the presence of an arbitrary coupling constant a gives an opportunity to rule out the nonphysical horizons. In one of the special cases, the obtained solution corresponds to a charged dilatonic black hole with only one horizon μ+ and hence to the Kaluza–Klein case. The most remarkable property of this result is that the metric, the scalar curvature, and both the electromagnetic and scalar fields are all regular on this surface. Moreover, while studying the dilaton charge, we found that the inclusion of the scalar field in the theory resulted in a contraction of the horizon. The behavior of the scalar curvature was analysed.

2005 ◽  
Vol 14 (06) ◽  
pp. 1049-1061 ◽  
Author(s):  
R. CHAN ◽  
M. F. A. DA SILVA ◽  
J. F. VILLAS DA ROCHA ◽  
ANZHONG WANG

All the (2+1)-dimensional circularly symmetric solutions with kinematic self-similarity of the second kind to the Einstein-massless-scalar field equations are found and their local and global properties are studied. It is found that some of them represent gravitational collapse of a massless scalar field, in which black holes are always formed.


2009 ◽  
Vol 24 (04) ◽  
pp. 719-739 ◽  
Author(s):  
M. KALAM ◽  
F. RAHAMAN ◽  
A. GHOSH ◽  
B. RAYCHAUDHURI

Several physical natures of charged brane-world black holes are investigated. Firstly, the timelike and null geodesics of the charged brane-world black holes are presented. We also analyze all the possible motions by plotting the effective potentials for various parameters for circular and radial geodesics. Secondly, we investigate the motion of test particles in the gravitational field of the charged brane-world black holes using the Hamilton–Jacobi formalism. We consider charged and uncharged test particles and examine their behavior in both static and nonstatic cases. Thirdly, the thermodynamics of the charged brane-world black holes are studied. Finally, it is shown that there is no phenomenon of superradiance for an incident massless scalar field for such a black hole.


2006 ◽  
Vol 15 (04) ◽  
pp. 545-557 ◽  
Author(s):  
R. CHAN ◽  
M. F. A. DA SILVA ◽  
JAIME F. VILLAS DA ROCHA

The (2+1)-dimensional geodesic circularly symmetric solutions of Einstein-massless-scalar field equations with negative cosmological constant are found and their local and global properties are studied. It is found that one of them represents gravitational collapse where black holes are always formed.


2015 ◽  
Vol 24 (09) ◽  
pp. 1542018 ◽  
Author(s):  
Carolina L. Benone ◽  
Luís C. B. Crispino ◽  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We discuss stationary bound states, a.k.a. clouds, for a massless test scalar field around Kerr black holes (BHs) and spinning acoustic BH analogues. In view of the absence of a mass term, the trapping is achieved via enclosing the BH — scalar field system in a cavity and imposing Dirichlet or Neumann boundary conditions. We discuss the variation of these bounds states with the discrete parameters that label them, as well as their spatial distribution, complementing results in our previous work [C. L. Benone, L. C. B. Crispino, C. Herdeiro and E. Radu, Phys. Rev. D91 (2015) 104038].


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
A. R. Aguirre ◽  
G. Flores-Hidalgo ◽  
R. G. Rana ◽  
E. S. Souza

AbstractIn this paper we study Lorentz-violation (LV) effects on the thermodynamics properties of a real scalar field theory due to the presence of a constant background tensor field. In particular, we analyse and compute explicitly the deviations of the internal energy, pressure, and entropy of the system at thermal equilibrium due to the LV contributions. For the free massless scalar field we obtain exact results, whereas for the massive case we perform approximated calculations. Finally, we consider the self interacting $$\phi ^4$$ ϕ 4 theory, and perform perturbative expansions in the coupling constant for obtaining relevant thermodynamics quantities.


2011 ◽  
Vol 26 (17) ◽  
pp. 1281-1290 ◽  
Author(s):  
SWASTIK BHATTACHARYA ◽  
PANKAJ S. JOSHI

All the classes of static massless scalar field models currently available in the Einstein theory of gravity necessarily contain a strong curvature naked singularity. We obtain here a family of solutions for static massless scalar fields coupled to gravity, which does not have any strong curvature singularity. This class of models contain a thin shell of singular matter, which has a physical interpretation. The central curvature singularity is, however, avoided which is common to all static massless scalar field spacetime models known so far. Our result thus points out that the full class of solutions in this case may contain non-singular models, which is an intriguing possibility.


2008 ◽  
Vol 17 (11) ◽  
pp. 2143-2158 ◽  
Author(s):  
F. I. M. PEREIRA ◽  
R. CHAN

Self-similar solutions of a collapsing perfect fluid and a massless scalar field with kinematic self-similarity of the first kind in 2+1 dimensions are obtained. The local and global properties of the solutions are studied. It is found that some of them represent gravitational collapse, in which black holes are always formed, and some may be interpreted as representing cosmological models.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Shahar Hod

AbstractIt has recently been revealed that massless scalar fields which are non-minimally coupled to the Maxwell electromagnetic tensor can be supported in the exterior spacetime regions of spherically symmetric charged black holes. The boundary between scalarized charged black-hole spacetimes and bald (scalarless) Reissner–Nordström black holes is determined by the presence of a critical existence-line which describes spatially regular linearized scalar ‘clouds’ that are supported in the black-hole spacetime. In the present paper we use analytical techniques in order to solve the Klein–Gordon wave equation for the non-minimally coupled linearized scalar fields in the spacetimes of near-extremal supporting black holes. In particular, we derive a remarkably compact analytical formula for the discrete resonant spectrum $$\{\alpha (l,Q/M;n)\}^{n=\infty }_{n=1}$$ { α ( l , Q / M ; n ) } n = 1 n = ∞ which characterizes the dimensionless coupling parameter of the composed Reissner–Nordström-black-hole-nonminimally-coupled-massless-scalar-field configurations along the critical existence-line of the Einstein–Maxwell-scalar theory (here Q/M is the dimensionless charge-to-mass ratio of the central supporting black hole and l is the angular harmonic index of the supported scalar configurations).


Sign in / Sign up

Export Citation Format

Share Document