scholarly journals Design and construction of a deep excavation in soft soils adjacent to the Shanghai Metro tunnels

2003 ◽  
Vol 40 (5) ◽  
pp. 933-948 ◽  
Author(s):  
Z F Hu ◽  
Z Q Yue ◽  
J Zhou ◽  
L G Tham

This paper presents the design and construction of a deep excavation for building foundations in saturated soil. This deep excavation was of particular interest because it was located above and beside the Shanghai Metro tunnels. The twin Shanghai Metro tunnels had to be in full operation during the deep excavation. Potential large deformation of the twin tunnels was one of the main concerns during the design and construction for the deep excavation. The paper discusses in detail the criteria and measures for controlling the soil and tunnel deformation. The measures included cast-in-place concrete diaphragm walls with bracing structural members, pumping consolidation, cement–soil mix pile systems, and rational excavation procedures. A simplified theoretical method was proposed to estimate the increment in undrained shear strength in a soft clay layer due to pumping consolidation. Furthermore, conventional finite element methods were used to predict the soil vertical and horizontal displacements induced by the excavation. Using the design and construction methods discussed in the paper, the settlement and horizontal displacement of the tunnels were successfully controlled within 5.0 mm and 9.0 mm, respectively. The curvature of longitudinal deformation curve of the tunnels was less than 1/15 000. The horizontal displacement of the braced diaphragm walls was less than 0.12% of the total excavation depth. Key words: Metro tunnels, saturated soft soil, deep excavation, design, construction, ground improvement, case studies.

2019 ◽  
Vol 9 (1) ◽  
pp. 481-489
Author(s):  
D.C. Lat ◽  
I.B.M. Jais ◽  
N. Ali ◽  
B. Baharom ◽  
N.Z. Mohd Yunus ◽  
...  

AbstractPolyurethane (PU) foam is a lightweight material that can be used efficiently as a ground improvement method in solving excessive and differential settlement of soil foundation mainly for infrastructures such as road, highway and parking spaces. The ground improvement method is done by excavation and removal of soft soil at shallow depth and replacement with lightweight PU foam slab. This study is done to simulate the model of marine clay soil integrated with polyurethane foam using finite element method (FEM) PLAXIS 2D for prediction of settlement behavior and uplift effect due to polyurethane foam mitigation method. Model of soft clay foundation stabilized with PU foam slab with variation in thickness and overburden loads were analyzed. Results from FEM exhibited the same trend as the results of the analytical method whereby PU foam has successfully reduced the amount of settlement significantly. With the increase in PU foam thickness, the settlement is reduced, nonetheless the uplift pressure starts to increase beyond the line of effective thickness. PU foam design chart has been produced for practical application in order to adopt the effective thickness of PU foam within tolerable settlement value and uplift pressure with respect to different overburden loads for ground improvement works.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1037-1040
Author(s):  
Jin Fang Hou ◽  
Ju Chen ◽  
Jian Yu

The artificial island ground on an open sea is covered by thick soft soil. It must be improved before using. In accordance with a designing scheme, the ground treatment method is inserting drain boards on land and jointed dewatering surcharge preloading, the residual settlement is not more than 30cm after improvement and the average consolidation degree is more than 85%. In order to estimate ground improvement effect and construction safety, instruments are buried to monitor the whole ground improving processes. By monitoring settlement and pore water pressure, it is shown that the total ground settlement in construction is 2234mm, its final settlement is 2464mm, and consolidation degree and residual settlement respectively satisfy requirements. In ground improvement, horizontal displacement is small and construction is safe. Meanwhile, the results of soil properties and vane shear strength detection tests show the soft soil ground is greatly reduced in water content and porosity ratio, and improved in strength. It is named that the ground improvement method is reasonable and reaches expected effect.


2012 ◽  
Vol 170-173 ◽  
pp. 13-19
Author(s):  
Shong Loong Chen ◽  
Cheng Tao Ho

Deep excavations in soft-clay layer on sloped bedrock often leads to lateral displacement on retaining structures and uneven settlement due to unbalanced pressure generated from excavation. A construction project for which an excavation was complete in soft clay layer on sloped bedrock in Taipei City was adopted in the study. It is learned from the observation logs of the studied case that a significant difference exists in the lateral displacement of diaphragm wall and settlement between up and down-slope sides of sloped bedrock. Deep excavation is in fact profoundly complicated interaction between excavation strutting and soil. In general practice, the design of excavation is frequently simplified as a 2D strain behavior. However, the actual excavation on sloped bedrock is quite different from 1D or 2D simulation in a symmetric manner. Therefore, 2D finite element analysis program, PLAXIS, is introduced for the analysis on the behaviors of soil clay layer on sloped bedrock in excavation. The result is compared with onsite observation data, including displacement of retaining wall, settlement, axial loads of struts and others. The result of retaining wall displacement analysis is found consistent with the trend derived from onsite observation, which is possible for reference of similar engineering analyses and designs in the future.


1996 ◽  
Vol 122 (9) ◽  
pp. 709-716 ◽  
Author(s):  
Chang-Yu Ou ◽  
Tzong-Shiann Wu ◽  
Hsii-Sheng Hsieh

1995 ◽  
Vol 32 (1) ◽  
pp. 106-121 ◽  
Author(s):  
Vinod K. Garga ◽  
Luciano V. Medeiros

The design of the industrial port of Sepetiba, 50 km south of Rio de Janeiro, Brazil, required a detailed evaluation of the underlying soft soil deposits. Initially, on the basis of laboratory tests, it was proposed to remove approximately 3.7 × 106 m3 of the very soft deposits in the stockpile area by dredging and substitute with hydraulic sand fill. Subsequently, in view of the cost of such a measure, a large program of field investigations was initiated to study the in situ characteristics of the soft clay to evaluate whether replacement of this material and (or) ground improvement was necessary. As part of this investigation, two large identically instrumented test fills (test fills B and D), each 65 m2 in plan and 5 m high, with 3:1 slopes were constructed. Test fill B was constructed over natural ground, whereas the subsoil beneath test fill D was treated with stone columns. The instrumentation for each test fill consisted of piezometers, deep settlement plates, surface settlement plates, and inclinometers. This paper provides a description of the field investigations, observations on installation of stone columns, analysis of instrumentation, a comparison of the behaviour of the two test fills, and a discussion on load tests on individual stone columns. Key words : case history, embankment, ground improvement, instrumentation, soft clay, stone columns.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ting Bai ◽  
Dong Xie

The deformation and environmental influence of the pit excavation in downtown is very important. A 3D FEM analysis is conducted to understand the deformation of a 13.9 to 15.2 m deep excavation with an in-plane dimension of about 189 m width and 251 m length constructed by the frame top-down method (FTDM) in the soft clay region in the Shanghai metropolitan area. The field monitoring results indicate that the magnitudes of wall deflections and ground settlements, along with the column’s uplift difference, are relatively small, which are below the specified protection levels, and that the FTDM is feasible as one of the extralarge excavation construction methods. It is reasonable to predict wall deflection by 3D FEM simulation with qualitative comparison between the simulated column uplifts and the measured data, yet the prediction of the settlement distribution is of no satisfaction. This project studied in this paper not only serves as a special case study calibrated and verified by numerical tools but also provides insights into the design and construction of an extralarge deep excavation using the frame top-down method in soft soils and metropolitan environment.


Author(s):  
Oktaffian Widjaja ◽  
Chaidir Anwar Makarim

Deep excavation in areas with very soft clay deposits need a good soil retaining system and excavation method. Using a diapraghm wall as a soil retaining system for deep excavation is a good choice can be done. Diapraghm wall is expected to limit the movement that occurs in the retaining walls and avoid leaks that occur in walls, this is needed to minimize damage to adjacent buildings. The top down excavation method by utilizing the basement floor as lateral resistance can be carried out to reduce the movement that occurs on the ground. In very soft soil areas with excavation distances to neighbors very close, the movement on the ground must be limited to minimize damage to adjacent buildings. Cross walls can be used to reduce the movement that occurs on the ground. Analysis of finite element with using the Plaxis program was carried out to investigate the performance of the retaining wall. From the results of the analysis conducted shows that using a cross wall at a location below the raft pile can be reduced the movement that occurs in the retaining wall and the excavation stages can be reduced. Keywords: cross wall; deep excavation; diapraghm wall; very soft soil ABSTRAKGalian dalam pada daerah dengan endapan tanah liat sangat lunak yang cukup dalam diperlukan sistem penahan tanah dan metode galian yang direncanakan dengan baik. Menggunakan dinding dipraghm sebagai sistem penahan tanah untuk galian dalam merupakan pilihan yang dapat dilakukan. Penggunaan dinding diapraghm diharapkan dapat membatasi pergerakan yang terjadi pada dinding dan menghindari kebocoran yang yang terjadi pada dinding penahan tanah karena sistem pengecoran yang saling mengunci dan pertemuan antara panel dinding dapat dipasang waterstop, hal ini diperlukan untuk menghindari kerusakan pada bangunan yang berdekatan dengan daerah galian. Metode galian top down yaitu galian bertahap dengan memanfaatkan lantai besmen sebagai tahanan lateral dapat dilakukan untuk mengurangi pergerakan yang terjadi pada tanah. Pada daerah tanah sangat lunak dengan jarak galian dengan tetangga sangat berdekatan pergerakan pada tanah harus dibatasi untuk meminimalkan kerusakan pada bangunan yang berdekatan. Dinding silang merupakan sistem tahanan lateral yang dapat dipergunakan untuk mengurangi pergerakan yang terjadi pada tanah. Analisis elemen hingga menggunakan program Plaxis 2D dilakukan untuk mengetahui kinerja dinding penahan tanah dan pergerakan yang terjadi. Dari hasil analisis yang dilakukan diperoleh hasil bahwa dengan menggunakan dinding silang yang terletak pada di bawah raft pile dapat menurunkan pergerakan yang terjadi pada dinding penahan tanah dan tahapan galian dapat dikurangi. 


This research paper investigates the behaviour of soft clay reinforced with stone column under sustained loading. Experiments were conducted in the laboratory on stone column reinforced prepared soft soil bed of kaolin having strength of 7.5 kPa with aggregate of size 2.5 to 10 mm as column material. The stone column with four diameters of 38.1, 50.8, 63.5 and 76.2mm were constructed which correspond to low to high area replacements ratios (i.e. 6.93% - 26.49%). The plain and reinforced soft clay beds were subjected to a sustained load of 150, 200, 250 and 300 kPa where each applied load has been maintained for 24 hours and the settlement behavior of composite ground was taken into account. The test results represent the settlement of reinforced soil bed decreases with increase of column diameters. The settlement reduction ratio is a measure of ground improvement which increases with area replacement ratio. The experimental and theoretical results values were compared as per IS15284 (Part 1): 2003 with reference of stress concentration ratio ‘n’(The ratio of stress in the column to the stress of surrounding ground area). The % variation in theoretical and experimental results is in the range of 50% and therefore the theoretical procedure needs to be revised.


1999 ◽  
Vol 36 (1) ◽  
pp. 152-160 ◽  
Author(s):  
I H Wong ◽  
T S Chua

An excavation in soft clay for the construction of a deep basement frequently is accompanied by large ground movements that may damage piles preinstalled at the base of the excavation. In a recent project involving the construction of a 10 m wide, 3.7 m deep drain, the construction method adopted entailed excavating the site soils and then driving precast concrete piles. The excavation was supported by steel sheet piles braced by one level of struts. Large settlements and horizontal movements of the ground were observed during pile driving. These movements exceeded those occurring during the excavation phase. Concrete aprons outside a one-story building adjacent to the excavation were badly damaged during excavation and pile driving. However, the building supported on steel piles was undamaged.Key words: deep excavation, sheet piles, pile driving, ground movement, basement construction.


Sign in / Sign up

Export Citation Format

Share Document