Study on Artificial Island Ground Improvement Method and Effect

2014 ◽  
Vol 1030-1032 ◽  
pp. 1037-1040
Author(s):  
Jin Fang Hou ◽  
Ju Chen ◽  
Jian Yu

The artificial island ground on an open sea is covered by thick soft soil. It must be improved before using. In accordance with a designing scheme, the ground treatment method is inserting drain boards on land and jointed dewatering surcharge preloading, the residual settlement is not more than 30cm after improvement and the average consolidation degree is more than 85%. In order to estimate ground improvement effect and construction safety, instruments are buried to monitor the whole ground improving processes. By monitoring settlement and pore water pressure, it is shown that the total ground settlement in construction is 2234mm, its final settlement is 2464mm, and consolidation degree and residual settlement respectively satisfy requirements. In ground improvement, horizontal displacement is small and construction is safe. Meanwhile, the results of soil properties and vane shear strength detection tests show the soft soil ground is greatly reduced in water content and porosity ratio, and improved in strength. It is named that the ground improvement method is reasonable and reaches expected effect.

2021 ◽  
Vol 44 (4) ◽  
pp. 1-12
Author(s):  
Nima Alkhorshid ◽  
Gregório Araújo ◽  
Ennio Palmeira

The use of granular column is one of the ground improvement methods used for soft soils. This method improves the foundation soils mechanical properties by displacing the soft soil with the compacted granular columns. The columns have high permeability that can accelerate the excess pore water pressure produced in soft soils and increase the undrained shear strength. When it comes to very soft soils, the use of granular columns is not of interest since these soils present no significant confinement to the columns. Here comes the encased columns that receive the confinement from the encasement materials. In this study, the influence of the column installation method on the surrounding soil and the encasement effect on the granular column performance were investigated using numerical analyses and experimental tests. The results show that numerical simulations can reasonably predict the behavior of both the encased column and the surrounding soil.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Daqing Wang ◽  
Dong Wei ◽  
Guoyi Lin ◽  
Jiannan Zheng ◽  
Zhiting Tang ◽  
...  

Combined vacuum and surcharge preloading has gradually been widely used because of its advantages of low cost, green environmental protection, and good treatment effect. The conventional prefabricated vertical drain presents obvious defects in vacuum preloading treatment, such as obvious silting, serious bending of the drainage board, large attenuation of vacuum degree of drainage board along the depth, long construction period, and so on, which affect the final reinforcement effect. In this paper, the MIDAS finite element simulation of combined vacuum and surcharge preloading of prefabricated vertical drains (PVDs) and prefabricated horizontal drains (PHDs) is established through the comparative experiment of the engineering field. The comparative experimental study is carried out from the aspects of the vertical settlement, horizontal displacement, and pore water pressure. The results show that under combined vacuum and surcharge preloading, the consolidation effect of soft soil with PHDs is better than that with PVDs. When PHDs are used, the vertical settlement increases by 7.2% compared with PVDs; the horizontal displacement is larger; and the pore water pressure dissipates faster. This is because when the PHDs are adopted, the consolidation direction of the soil is consistent with the direction of the vacuum suction, which is mainly caused by vertical settlement. With the consolidation, the spacing between PHDs is gradually shortened, and the drainage distance is reduced, which can effectively reduce the consolidation time and improve the reinforcement effect of the soil. In addition, the PHDs can move downward uniformly with the soil during the consolidation process and have almost no bending deformation, which makes the vacuum transfer more uniform and effective.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Shaofu Gu ◽  
Weizheng Liu ◽  
Mengyuan Ge

The south extension line was constructed as a new part of the Xintai Expressway in Guangdong Province, China. The project required the construction of an embankment over soft soil with a thickness of up to approximately 14.0 m, and prestressed pipe pile was selected for reinforcing the soft soil foundation to increase bearing capacity and reduce settlement. Embankment sliding with a length of approximately 110 m and cracking with a length that exceeded 300 m occurred before the construction of the pavement structure. Field investigation and theoretical analysis results indicate that the safety factor of the overall stability calculated by the existing code methods is overly large, thereby resulting in large design pile spacing, low design bearing capacity provided by single pile, and excessive load shared by subsoil between piles. These results all cause the flow sliding of soft soil between the piles and the bending fracture of some piles. The revised density method can be used to check the stability of flow sliding, and the bending moment of piles should also be checked during the embankment design stage. In addition, perpendicularity deviation and poor joint quality of pile construction also contributed to the reduction of the bearing capacity of the pipe piles and the overall stability of embankment. Reconstruction of additional rigid piles and add pile after drilling holes are adopted in the sliding and cracking sections to reinforce the failed embankment, respectively. The remediation effect was validated by the measured excess pore water pressure, subgrade settlement, and horizontal displacement.


2020 ◽  
Vol 3 (3) ◽  
pp. 911
Author(s):  
Michael Christopher Yapriadi ◽  
Inda Sumarli ◽  
Ali Iskandar

The development in Indonesia continues to grow. Hence, the feasible land for construction is drastically decreased. However, some projects must be constructed on that kind of land. One solution to solve this problem is by using a soil improvement. A project in Bandung Selatan chose to apply Surcharge Preloading with PVD soil improvement method. This project used a combination of 9,2 metres surcharge preload and a 28 metres depth PVD, with triangular formation and 1,2 metres spacing. The soil improvement was finished after 548 days. This analysis aims to evaluate the settlement from the soil improvement result, which is 1,297 metres. This analysis uses a finite difference method program. The excess pore water pressure from the analysis result is 0,229 T/m2 on the 548th day. Therefore, these soil layers have possibilities to settle again in future. The 90% degree of consolidation settlement for this soil layers is 2,31 metres, which will be reached on the 813,4th days. It is suspected that there are some mistakes either during the soil improvement designing or the soil improvement process. Pembangunan di Indonesia terus berkembang. Akibatnya jumlah tanah yang baik untuk proyek konstruksi semakin menipis. Kendati demikian, ada kalanya suatu proyek harus dilaksanakan di lokasi tersebut. Salah satu solusi yang dapat ditempuh adalah dengan melakukan perbaikan tanah. Sebuah proyek di Bandung Selatan melakukan perbaikan tanah dengan metode Surcharge Preloading dengan PVD. Proyek ini menggunakan kombinasi antara timbunan setinggi 9,2 meter dan PVD sedalam 28 meter, dengan formasi segitiga yang dipasang dengan jarak antar PVD 1,2 meter. Perbaikan tanah dilakukan selama 548 hari. Analisis ini bertujuan melakukan evaluasi terhadap kurang maksimalnya penurunan di lapangan yang hanya mencapai 1,297 meter. Analisis dilakukan dengan bantuan program beda hingga. Berdasarkan hasil analisis, besarnya excess pore water pressure pada hari ke-548 adalah 0,229 T/m,2, sehingga lapisan tanah tersebut masih memiliki potensi untuk mengalami penurunan. Adapun penurunan konsolidasi 90% yang dapat terjadi sebesar 2,31 meter pada hari ke-813,4. Diduga terdapat kesalahan baik dalam perhitungan perencanaan awal ataupun saat pelaksanaan di lapangan.


2014 ◽  
Vol 638-640 ◽  
pp. 1293-1296
Author(s):  
Er Lin Zhang ◽  
Rui Xia Zhang ◽  
Yan Yong An

Setting some projects including surface subsidence, pore water pressure and deep horizontal displacement etc, tracking monitoring soil deformation during construction, and controlling reasonable loading rate are the guarantee of safety and stability of foundation and structure during the construction of south breakwater of industrial park. Monitoring result shows that subsidence and displacement meet the design requirement, with more than 85% of foundation consolidation degree and every controllable parameter index, which achieves stability, safety and informatization construction of breakwater engineering, and guides similar engineering effectively.


2011 ◽  
Vol 261-263 ◽  
pp. 1755-1759
Author(s):  
Hong Jun Liu ◽  
Ying Guo ◽  
Wei Shan ◽  
Xia Xin Tao

The consolidation coefficient is the important parameters for soft soil foundation to predict its consolidation settlement. At present, one-way compression test is mainly used to study consolidation process and consolidation coefficient of soft soil. For saturated soft soil in marsh, through triaxial shear test, the dissipation of pore water pressure and consolidation process can be observed during the course of soil sample drainage. This study got test result bellow through above triaxial test. Firstly, pore water pressure has hysteresis effect during the consolidation process, and the reason for this is analyzed. Secondly, consolidation degree in different consolidation time can be got according to the change of discharged water volume. Thirdly, according to Terzaghi consolidation theory, consolidation coefficients can be got under different consolidation pressures. Consolidation coefficient first increases with the increasing of consolidation degree, when consolidation degree is between 40% and 80%, saturated soft soil has larger consolidation coefficient, consolidation coefficient of saturated soft soil in marsh is between 2Ч10-4 cm2 / s and 10Ч10-4cm2 / s.


2019 ◽  
Vol 9 (1) ◽  
pp. 481-489
Author(s):  
D.C. Lat ◽  
I.B.M. Jais ◽  
N. Ali ◽  
B. Baharom ◽  
N.Z. Mohd Yunus ◽  
...  

AbstractPolyurethane (PU) foam is a lightweight material that can be used efficiently as a ground improvement method in solving excessive and differential settlement of soil foundation mainly for infrastructures such as road, highway and parking spaces. The ground improvement method is done by excavation and removal of soft soil at shallow depth and replacement with lightweight PU foam slab. This study is done to simulate the model of marine clay soil integrated with polyurethane foam using finite element method (FEM) PLAXIS 2D for prediction of settlement behavior and uplift effect due to polyurethane foam mitigation method. Model of soft clay foundation stabilized with PU foam slab with variation in thickness and overburden loads were analyzed. Results from FEM exhibited the same trend as the results of the analytical method whereby PU foam has successfully reduced the amount of settlement significantly. With the increase in PU foam thickness, the settlement is reduced, nonetheless the uplift pressure starts to increase beyond the line of effective thickness. PU foam design chart has been produced for practical application in order to adopt the effective thickness of PU foam within tolerable settlement value and uplift pressure with respect to different overburden loads for ground improvement works.


2020 ◽  
Vol 22 (2) ◽  
pp. 149-155
Author(s):  
Iskandar ◽  
Rabiya

Soil consolidation testing using an oedometer and rowe cell. Oedometers are often used on clay and soft soils. However, in the development of the rowe cell device, the results of lowering soft soil were better than the oedometer. The advantage of this rowe cell is that it can determine the saturation value of the soil samples tested. The rowe cell tester can measure the pore water pressure at the beginning and end of each consolidation stage. This rowe cell can provide suitable settlement for soft soils. This consolidation test to obtain soil parameters such as Cv and Cc by using the rowe cell tool. After that, from the test results, the two tools were compared.


2022 ◽  
Vol 12 (2) ◽  
pp. 567
Author(s):  
Young-Hak Lee ◽  
Jung-Hyun Ryu ◽  
Joon Heo ◽  
Jae-Woong Shim ◽  
Dal-Won Lee

In recent years, as the number of reservoir embankments constructed has increased, embankment failures due to cracks in aging conduits have also increased. In this study, a crack in a conduit was modeled based on the current conduit design model, and the risk of internal erosion was analyzed using a large-scale model test and three-dimensional deformation–seepage analysis. The results show that when cracks existed in the conduit, soil erosion and cavitation occurred near the crack area, which made the conduit extremely vulnerable to internal erosion. Herein, a model is proposed that can reduce internal erosion by applying a layer of sand and geotextiles on the upper part of the conduit located close to the downstream slope. In the proposed model, only partial erosion occurred inside the conduit, and no cavitation appeared near the crack in the conduit. The results suggest that internal erosion can be suppressed when the water pressure acting intensively on the crack in the conduit is dispersed by the drainage layer. To validate these results, the pore water pressure, seepage line, and hydraulic gradient were investigated to confirm the erosion phenomenon and reinforcement effect.


2011 ◽  
Vol 368-373 ◽  
pp. 2795-2803
Author(s):  
Heng Hu ◽  
Yan Li ◽  
Zhi Liang Dong ◽  
Yan Luo ◽  
Gong Xin Zhang

All the time, security control method of loading is an important research part in the surcharge preloading, which is directly related to safety of the construction process. Starting from the stress path, discussing the variation of excess pore water pressure and relationship between stress path and security, and bringing forward the control method with a safety factor Fs based on the stress path. By measuring the change of excess pore water pressure, the control method with a safety factor Fs can reflect quantitatively the security status of soil and achieve the purpose of the process control, finally the security control method including the safety factor of loading and speed control is put forward to monitor construction safety. The safety factor of loading Fs is verified and back analyzed with the finite-element software, getting the correction factor from 0.90 to 1.20.


Sign in / Sign up

Export Citation Format

Share Document