Limit states and reliability-based design for a non-codified problem of aqueduct buoyancy

2006 ◽  
Vol 43 (8) ◽  
pp. 869-883
Author(s):  
Gil Robinson ◽  
James Graham ◽  
Ken Skaftfeld ◽  
Ron Sorokowski

Limit states design methods and engineering judgement have been used to assess buoyancy issues for remediation of the 85 year old Shoal Lake Aqueduct in Manitoba. The study demonstrates how these methods can be applied to non-codified engineering problems. Four separate buoyancy analyses were completed using (i) partial safety factors from the Ontario Highway Bridge Design Code, (ii) project-specific partial safety factors, (iii) Monte Carlo simulation techniques, and (iv) working stress design (WSD) methods. Engineering judgement was required to develop a buoyancy model, interpret data for modeling parameters, and provide meaningful values for parameters that could not be measured. Results from the analyses show that more uniform reliability is provided when measured variability of the model parameters is accounted for. The reliability is not quantifiable when working stress design methods are used. Key words: limit states, probability, non-codified problem, aqueduct, buoyancy.

1984 ◽  
Vol 21 (1) ◽  
pp. 1-7 ◽  
Author(s):  
G. G. Meyerhof

This paper outlines the ultimate and serviceability limit states in geotechnical engineering analyses. The magnitude of customary total and suggested partial safety factors in earthworks, earth retaining structures, excavations, and foundations is discussed. On the basis of comparisons between these safety factors and using recommended load factors on various types of loading, including water pressures, common resistance factors on cohesion and friction of soils and performance factors can be established together with some additional modification factors for particular stability conditions. The serviceability limit states of foundations and structures are briefly discussed.


1986 ◽  
Vol 13 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Andrzej S. Nowak ◽  
Raymond J. Taylor

The new Ontario Highway Bridge Design Code (OHBDC) is based on limit states theory and therefore uses a load and resistance factor format. This paper deals with the development of the basis for the timber bridge design provisions (OHBDC). Three structural systems are considered: sawn timber stringers, laminated nailed decks, and prestressed laminated decks. The latter system has been successfully used in Ontario for the last 7 years.The acceptance criterion in calculation of load and resistance factors is structural reliability. It is required that bridges designed using the new code must have a reliability equal to or greater than a preselected target value. Reliability is measured in terms of the reliability index. The safety analysis is performed for a structural system rather than for individual members. The live load model was developed on the basis of available truck survey data. Material properties are based on extensive in-grade test results. Numerical examples are included to demonstrate the presented approach. Key words: bridge deck, design code, prestressed timber, reliability, reliability index, stringers, structural safety, timber bridges.


Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 280 ◽  
Author(s):  
Maddalena Marchelli ◽  
Valerio De Biagi ◽  
Daniele Peila

Net fences are among the most widespread passive protective measures to mitigate the risk from rockfall events. Despite the current design approach being based on partial safety factors, a more efficient time-dependent reliability approach has been recently introduced by the authors. This method is influenced by various parameters related to the geometry and the kinematics of the block, i.e., the uncertainty related to the distribution of the size of the impacting block, its occurrence probability, and the shape of the right-tail of the distributions of its velocity and trajectory height at the location of the net fence. Furthermore, the block size distribution of the deposit greatly affects the results. The present work focuses on the possible range of such parameters to encompass the great majority of real events. The obtained results are compared with the current design approaches based on fixed partial safety factors. It emerges that the choice of the characteristic mass of the block and the failure probability greatly influence the results. Moreover, if a set of partial safety factors is assigned to different sites, an intrinsic variability in the failure probability has to be accepted. Suggestions for an accurate procedure and future developments are provided.


Author(s):  
Markus Braun ◽  
Bernd Schuppener ◽  
Thomas Richter ◽  
Franz Ruppert ◽  
Martin Ziegler

After implementing the Eurocodes, concerns were raised that the set of rules and regulations is not suitable for the designer’s day-to-day use. The first generation of Eurocodes consists of 58 codes with more than 5,200 pages. Moreover, practitioners have to cope with national supplementary codes. As a result, an “Initiative on Improving the Practicability of Technical Rules for Building Constructions” (PRB) was established by the German construction industry and associations of structural engineers in 2011. As part of the initiative, a Project Group for Geotechnical Design was established alongside groups for the other Eurocodes, with the aim of streamlining Eurocode 7 and reducing the number of design approaches and partial safety factors. The paper will analyse the shortcomings of the two parts of Eurocode 7 and present a concept for a more concise and user-friendly code. Furthermore, comparative calculations have been performed for standard geotechnical design applications to investigate the potential for European harmonization in geotechnical design. The results are described and it is shown how they can be incorporated in the revision of EC 7. Moreover, a new formula for verifying geotechnical ultimate limit states is presented which formally covers all design approaches and also enables other parameters such as consequence classes, human error etc. to be incorporated by applying different multiplicative partial safety factors.


Author(s):  
Zhenyong Zhang ◽  
Yawei Zhou ◽  
Jinyuan Zhang

Although the traditional method based on stress analysis is simple and convenient, the main limitation is that it does not reflect the actual failure mechanisms (or limit states). A pipeline network database of about 40 thousand kilometers comprising 258 design cases that represent combinations of steel grade, diameter, pressure, and location class is established, in order to evaluate and improve the design factors specified in the Chinese standard “Code for design of gas transmission pipeline engineering” (GB 50251). Referring to the research report “Target Reliability Levels for the Design and Assessment of Onshore Natural Gas Pipelines” accomplished by C-FER in 2005, the critical wall thicknesses and corresponding equivalent design factors are calculated by using reliability-based method to meet specified reliability targets. The research shows that the equivalent design factors obtained by Reliability-Based Design (RBD) method tend to increase as the pipe diameters get larger. The new design factors are smaller than those specified in the design code for pipelines with small diameter in location class 1 and 2, and larger than those in the design code for the other pipelines. Therefore, design factors are modified in each location class. The new factors are specific to pipes with small diameter (D ≤ 508mm), medium diameter (508mm < D < 711mm), and large diameter (711mm ≤ D ≤ 1219mm), thus enhancing the rationality and practicability of design factors.


Author(s):  
T. J. E. Zimmerman ◽  
Q. Chen ◽  
M. D. Pandey

The limit states design appendix currently being developed for inclusion in the Canadian Standards Association pipeline design code, Z662, Oil and Gas Pipeline Systems contains preliminary partial safety factors that were selected on the basis that they result in designs similar to those produced using the existing working stress design standards. This paper suggests an approach for selecting partial factors for limit states design of pipelines based on formal reliability analysis. Such an approach recognizes that consistent safety levels can be achieved for different pipeline sections by varying the target reliability as a function of the severity of failure consequences, where consequences are measured in terms of public safety, economic costs, and damage to the environment. Where the consequences of failure are more severe, higher reliability is required. Where the consequences are less severe, lower reliability can be tolerated, with the same risk level being achieved. This paper reviews the limit states design method and discusses the selection of target reliability levels and the reliability analysis procedures used to calibrate partial design factors.


Author(s):  
Rune Dahlberg ◽  
Jan Mathisen

As the water depth of hydrocarbon discoveries becomes deeper, the technological challenges related to the design of mooring systems increases. Changing from steel catenary mooring systems (CMS) to fibre rope taut mooring systems (TMS) has been accompanied by an immense focus on how to qualify and approve fibre rope material for use in a TMS. This involves items related to specifications for manufacturing, handling and testing fibre ropes, as well as calibration of safety factors to use in the design of TMSs. One consequence of moving to a TMS is that the anchors will have to take more uplift load than in a conventional CMS, which makes the anchors a more critical component of the mooring system than before. The types of anchor normally available to the designer of a TMS are pile anchors, suction anchors and various types of plate anchors. Anchors of all types are designed and installed in ever-deeper water, but the safety of the designed mooring systems varies with the design code adopted. There is thus an obvious need for an industry standard, a design code for each anchor type that is calibrated based on structural reliability analysis using the current experience and knowledge in the industry. This paper compares anchor design codes that use total safety factors (TSF) with the DNV design code that uses partial safety factors and failure consequence classes. Examples of design codes for station-keeping systems that adopt the TSF format are API RP2SK and (assumed herein) the ISO code, which is under development. The comparison demonstrates that use of the safety format adopted in the DNV code provides more flexibility and ensures a uniform safety level of all components in a mooring system than the TSF format. If all types of anchor were designed to the same safety level it would be possible to compare anchors without worrying about differences in safety. A typical approach for calibration of a design code is described.


Author(s):  
Maher Nessim

In 2005, guidelines for the application of reliability-based design and assessment (RBDA) to natural gas pipelines were developed under PRCI sponsorship. The methodology underlying these guidelines has since been adopted as a non-mandatory Annex in the CSA Z662 standard (Annex O). The benefits of reliability-based methods include consistent safety levels, optimized solutions that make best use of available resources and flexibility in addressing non-standard problems. The key limitations of the methodology are that it requires specialized expertise, good data and a significant analysis effort. One approach that has been successfully used to simplify the application of reliability-based methods is to develop simple design and assessment rules that are designed to meet specified safety levels. In this approach, which is referred to here as limit states design and assessment, the checking rules incorporate safety factors that are “calibrated” to meet pre-selected reliability targets, within a specified tolerance, over a wide range of possible design and assessment cases. Probabilistic analyses are performed as part of the development stage, but the resulting checks are deterministic. The basic elements required to calibrate limit states design and assessment checks have been developed as part of the RBDA methodology, making the development of a limit states approach feasible. This paper provides an overview of an ongoing Joint Industry Project to develop a limit states design and assessment standard that addresses the key threats to the safety of onshore pipelines. The benefits and limitations of this approach are discussed in comparison to the full RBDA approach, and the expected outcomes of the project are described.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Kleio Avrithi ◽  
Bilal M. Ayyub

Nuclear pipes are designed to withstand primary membrane stresses generated by internal pressure according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, Section III, Parts NB-3641, NC-3641, and ND-3641, which uses the allowable stress design (ASD) method. This paper presents limit states and equations for the design of nuclear pipes for internal pressure based on the load and resistance factor design (LRFD) method. The LRFD method is shown and explained to be more consistent than the ASD method. The paper presents the procedure for the derivation of the partial safety factors. Moreover, these factors are evaluated, example calculations are provided, and comparisons with the present design are made.


Sign in / Sign up

Export Citation Format

Share Document