An approximate method for estimating the stability of geotextile-reinforced embankments

1985 ◽  
Vol 22 (3) ◽  
pp. 392-398 ◽  
Author(s):  
R. K. Rowe ◽  
K. L. Soderman

A method of estimating the short-term stability of reinforced embankments constructed on a deposit that can be idealized as being uniform and purely cohesive is described. This approach maintains the simplicity of conventional limit equilibrium techniques while incorporating the effect of soil–geotextile interaction in terms of an allowable compatible strain for the geotextile. This allowable compatible strain may be deduced from a design chart and depends on the foundation stiffness, the embankment geometry, the depth of the deposit, and the critical height of an unreinforced embankment. The procedure is checked against finite element results and against one published case history. Key words: embankment, geotextile, analysis, limit equilibrium, finite element, soft clay, shear strength, soil reinforcement.

2021 ◽  
Author(s):  
Hua Liu ◽  
Zelin Niu ◽  
Yuanhong Dong ◽  
Naifei Liu ◽  
Shuocheng Zhang

Abstract In order to study the influence of chemical solution on the stability of loess embankment in seasonally frozen regions, the compression index, shear strength index and embankment safety factor of compacted loess fillings that were treated by different concentrations of chemical solution were analyzed through laboratory test and slope stability analysis program. The experimental results showed that the collapsible coefficients of remolded loess treated by different chemical solution will all increase which comparing the distilled water, and then will change again after freezing-thawing cycles (FTCs). The compression index of undisturbed loess will show regularity with the increase of chemical solution concentration. The shear strength of remolded loess also changed under the chemical solution and FTCs. Besides, simulation of the strength parameters by limit equilibrium methods showed that the safety factor of loess embankment with treatment of solution was significantly higher than that of untreated one, and the FTC would cause a further deterioration. The embankment stability improved after treated by chemical solution without considering seepage of rainwater. These results would provide a novel method to the problem of embankment stability related to environmental condition changes.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Adam J. Lobbestael ◽  
Adda Athanasopoulos-Zekkos ◽  
Josh Colley

The effects of progressive failure on flood embankments with underlying thin layers of soft, sensitive soils are investigated. Finite element analysis allows for investigation of strain-softening effects and progressive failure in soft and sensitive soils. However, limit equilibrium methods for slope stability analysis, widely used in industry, cannot capture these effects and may result in unconservative factors of safety. A parametric analysis was conducted to investigate the effect of thin layers of soft sensitive soils on the stability of flood embankments. A flood embankment was modeled using both the limit equilibrium method and the finite element method. The foundation profile was altered to determine the extent to which varying soft and sensitive soils affected the stability of the embankment, with respect to progressive failure. The results from the two methods were compared to determine reduction factors that can be applied towards factors of safety computed using limit equilibrium methods, in order to capture progressive failure.


2016 ◽  
Vol 857 ◽  
pp. 555-559 ◽  
Author(s):  
Zuhayr Md Ghazaly ◽  
Mustaqqim Abdul Rahim ◽  
Kok Alfred Chee Jee ◽  
Nur Fitriah Isa ◽  
Liyana Ahmad Sofri

Slope stability analysis is one of the ancient tasks in the geotechnical engineering. There are two major methods; limit equilibrium method (LEM) and finite element method (FEM) that were used to analyze the factor of safety (FOS) to determine the stability of slope. The factor of safety will affect the remediation method to be underdesign or overdesign if the analysis method was not well chosen. This can lead to safety and costing problems which are the main concern. Furthermore, there were no statement that issued one of the analysis methods was more preferred than another. To achieve the objective of this research, the soil sample collected from landslide at Wang Kelian were tested to obtain the parameters of the soils. Then, those results were inserted into Plaxis and Slope/W software for modeling to obtain the factor of safety based on different cases such as geometry and homogenous of slope. The FOS obtained by FEM was generally lower compared to LEM but LEM can provide an obvious critical slip surface. This can be explained by their principles. Overall, the analysis method chosen must be based on the purpose of the analysis.


1990 ◽  
Vol 27 (2) ◽  
pp. 224-232 ◽  
Author(s):  
R. J. Chalaturnyk ◽  
J. D. Scott ◽  
D. H. K. Chan ◽  
E. A. Richards

Nonlinear finite element analyses were performed on a nonreinforced embankment and a polymeric reinforced embankment, with 1:1 side slopes, constructed on competent foundations. The nonreinforced and reinforced embankment analyses are compared to examine the influence of polymeric reinforcement within a soil slope. It is shown that significant reductions in the shearing, horizontal, and vertical strains within the slope occur because of the presence of the reinforcement.The finite element analysis of the reinforced embankment construction gives the magnitude and distribution of load within the reinforcement. For all embankment heights, the maximum reinforcement load did not occur in the lowest reinforcing layer but in the reinforcing layer placed 0.4H above the foundation, where H is the height of the slope. The displacement patterns and surface deformations of the nonreinforced and reinforced slopes are compared to show the marked reduction in slope movements resulting from the presence of the reinforcement.The location and shape of potential shear surfaces within the homogeneous reinforced slope are examined. The position of the maximum load in each reinforcing layer within the reinforced slope indicates that, for the example studied, a circular-shaped slip surface represents a probable failure mechanism within the slope. Key words: soil reinforcement, geotextiles, finite element, slope stability, geogrids, limit equilibrium, reinforced slope.


2011 ◽  
Vol 368-373 ◽  
pp. 234-240
Author(s):  
Shu Li Wang ◽  
Man Gen Mu ◽  
Ran Wang ◽  
Wen Bo Cui

This paper presents the results of a study on a joint slope deformation affecting the western slope of the GuangYang highway (YangQuan, China). Fieldwork identified the ongoing deformational process and assisted in defining its mechanisms, evolution and controlling factors. Here we discuss how to use limit equilibrium methods to calculate the behavior of slopes and to use the finite element analysis to evaluate the stability, displacements of slopes and soil-slope stabilization interaction. The finite element method with shear strength reduction (SSR) technique is explained in Phase2D. This method is effective for the prediction of the stability of slope. Based on numerical comparisons between the limit equilibrium methods and finite element method, it is suggested that the finite element method with SSR technique is a reliable and maybe unique approach to evaluate the slope stability. The paper also took into account effectiveness of the large rain and seismic load. The results of the numerical analysis are consistent with the observed slope surface evidence.


2021 ◽  
Vol 44 (3) ◽  
pp. 1-13
Author(s):  
José Fernando Jucá ◽  
Alison Norberto ◽  
José Ivan Santos Júnior ◽  
Fernando Marinho

For geotechnical and environmental reasons, landfills are positioned above the regional water table and thus are formed in unsaturated conditions. This condition can be different if the drainage system and the rain regime of the site are such that they create a level of internal liquid in the landfill. During January and February 2019, excessive movements occurred in the slopes of the Brasília sanitary landfill. A geotechnical investigation indicated that the raised leachate level caused by the clogging of the drainage system contributed to the landfilled waste movements. The limit equilibrium analysis was used to predict the relationship between leachate level and slope stability. In order to understand the process that led to the rupture, flow and stability analysis by limit equilibrium were performed. The parameters associated with flow, water retention capacity, and shear strength were obtained based on literature evaluations. In addition, data from tests were used, which allowed to define more accurately the distribution of pore pressures of liquid that led to the failure. This study allowed to define the cause of failure and also to establish the role of the drainage system in maintaining the stability of the landfill. The studies indicated that although the gain of shear strength of landfill due to the unsaturated condition is negligible, the process of flow in unsaturated medium, associated with climatic aspects, are fundamental for a medium- and long-term analysis.


Author(s):  
Shaoyang Dong ◽  
Xiong (Bill) Yu

A significant number of landslides occur in cold regions because of freezing and thawing cycles. The instability of thawing slopes can cause serious damage to transportation infrastructure and property, and even loss of human life. This type of landslide is difficult to analyze by the traditional limit-equilibrium methods, however, because of the complicated multi-physics processes involved. This paper describes a holistic microstructure-based random finite element model (RFEM) to simulate the stability of a thawing slope. The RFEM model is developed to simulate the bulk behaviors of frozen and unfrozen soils based on the behaviors of individual phases. The phase coded image of a frozen silty clay is first custom built and then converted into a finite element model. The mechanical behaviors of individual phases of the frozen soil are calibrated by uniaxial compressive test. The triaxial test is then simulated by RFEM to obtain the shear strength parameters of frozen and unfrozen soils. Coupled thermal-mechanical REFM models are developed to simulate the effects of temperature on the displacement field and stress field in the slope. From the results, the local factor of safety field can be determined. The development of local factor of safety and potential failure surface associated with the thawing process over a typical year are simulated by this new model. The variations in the stability of thawing slopes predicted by this model are consistent with field observations as well as the global-wise slope stability analysis.


Author(s):  
Jorge R. Parra ◽  
J. Erik Loehr ◽  
David J. Hagemeyer ◽  
John J. Bowders

The performance of earth slopes reinforced with arrays of slender reinforcing members is currently being investigated. The reinforcing members used are fabricated from recycled plastics and other waste materials to form sections 90 mm (3.5 in.) × 90 mm (3.5 in.) × 2.4 m (8 ft) long. A design methodology was adopted to estimate the limit resistance provided by each member, which is then incorporated into conventional limit equilibrium slope stability analyses to calculate the improvement in the factor of safety under various reinforcement scenarios. Four field test sites were stabilized using recycled plastic reinforcement to demonstrate the effectiveness of the stabilization scheme and to evaluate the load transfer mechanisms between the soil and the reinforcement. One additional site was stabilized with similarly sized steel pipe members for comparison with the recycled plastic members. The stabilized slopes are performing well, whereas several control sections have experienced failures. The performance of each site is being monitored with field instrumentation to monitor lateral movements, pore pressures, strains within the reinforcing members, and the lateral loads applied to the members. Observations to date indicate that the slopes are performing well and that the reinforcing members have significant remaining capacity to maintain the stability of the slopes.


2013 ◽  
Vol 671-674 ◽  
pp. 180-185
Author(s):  
Qing Wang ◽  
Lei Hua Yao ◽  
Ning Zhang

Xiufengsi Landslide is an ancient landslide in Wushan County, Chongqing, China. Under natural condition, this landslide is stable. Due to the Three Gorges Reservoir, however, the water level in this region fluctuates within the range of [145 m, 175 m], periodically. Furthermore, an increasing number of residential quarters have been built on this landslide that also increase the possibility of occurrences of the landslide. Motivated by the government’s desire to take measures in control the landslide, we use two approaches to study the stability of this landslide. Under different computational conditions, the safety factors of the landslide are calculated by using limit equilibrium method and finite element method, respectively. Based on the comparison of the results, the stability of the landslide is analyzed more objectively and comprehensively. This work also lends insight into the landslide forecast.


2008 ◽  
Vol 45 (4) ◽  
pp. 549-559 ◽  
Author(s):  
N. Kovacevic ◽  
G. W.E. Miligan ◽  
C. O. Menkiti ◽  
M. Long ◽  
D. M. Potts

This paper describes finite element analyses undertaken to gain an insight into the short-term behaviour of temporary steep slopes in Dublin boulder clay for cut and cover sections of the recently completed Dublin Port Tunnel. The analyses of two steep slopes are reported: (i) an unsupported slope for a full-scale trial excavation and (ii) a partly nailed slope for a prototype cut and cover structure. It has been found that a major contribution to the stability of these cuts is an increase in the effective stress (and thus strength) due to both (i) depressed pore-water pressures (suctions) and (ii) a tendency of the Dublin boulder clay to dilate during undrained excavation in this low permeability and very dense material. However, the presence of even thin, discontinuous but recharged granular lenses of a higher permeability significantly reduces the time to failure.


Sign in / Sign up

Export Citation Format

Share Document