Field Performance of Embankments Stabilized with Recycled Plastic Reinforcement

Author(s):  
Jorge R. Parra ◽  
J. Erik Loehr ◽  
David J. Hagemeyer ◽  
John J. Bowders

The performance of earth slopes reinforced with arrays of slender reinforcing members is currently being investigated. The reinforcing members used are fabricated from recycled plastics and other waste materials to form sections 90 mm (3.5 in.) × 90 mm (3.5 in.) × 2.4 m (8 ft) long. A design methodology was adopted to estimate the limit resistance provided by each member, which is then incorporated into conventional limit equilibrium slope stability analyses to calculate the improvement in the factor of safety under various reinforcement scenarios. Four field test sites were stabilized using recycled plastic reinforcement to demonstrate the effectiveness of the stabilization scheme and to evaluate the load transfer mechanisms between the soil and the reinforcement. One additional site was stabilized with similarly sized steel pipe members for comparison with the recycled plastic members. The stabilized slopes are performing well, whereas several control sections have experienced failures. The performance of each site is being monitored with field instrumentation to monitor lateral movements, pore pressures, strains within the reinforcing members, and the lateral loads applied to the members. Observations to date indicate that the slopes are performing well and that the reinforcing members have significant remaining capacity to maintain the stability of the slopes.

1985 ◽  
Vol 22 (3) ◽  
pp. 392-398 ◽  
Author(s):  
R. K. Rowe ◽  
K. L. Soderman

A method of estimating the short-term stability of reinforced embankments constructed on a deposit that can be idealized as being uniform and purely cohesive is described. This approach maintains the simplicity of conventional limit equilibrium techniques while incorporating the effect of soil–geotextile interaction in terms of an allowable compatible strain for the geotextile. This allowable compatible strain may be deduced from a design chart and depends on the foundation stiffness, the embankment geometry, the depth of the deposit, and the critical height of an unreinforced embankment. The procedure is checked against finite element results and against one published case history. Key words: embankment, geotextile, analysis, limit equilibrium, finite element, soft clay, shear strength, soil reinforcement.


Author(s):  
Haris Alexakis ◽  
Nicos Makris

This chapter revisits the limit equilibrium analysis of masonry arches when subjected to gravity and lateral loads. Firstly, the major contributions during the last three centuries either with geometric or energy formulations are discussed, and subsequently, the performance of the Distinct Element Method (DEM) is examined against rigorous solutions. Analytical solutions with the use of energy methods are presented for the assessment of the stability of masonry arches with circular or elliptical shapes under various load conditions, including gravity, lateral inertial loading or earth pressures. The DEM is implemented in all loading cases and reproduces the analytical results with remarkable accuracy. The DEM is used either for a direct correlation with the classic limit analysis that assumes that the joints of the masonry blocks do not transmit tension, masonry blocks are rigid and incompressible and do not slide at the joints, or by permitting sliding with the adoption of Coulomb sliding failure between the joints.


2016 ◽  
Vol 53 (9) ◽  
pp. 1522-1532 ◽  
Author(s):  
Farshid Vahedifard ◽  
Shahriar Shahrokhabadi ◽  
Dov Leshchinsky

This study presents a methodology to determine the stability and optimal profile for slopes with concave cross section under static and seismic conditions. Concave profiles are observed in some natural slopes suggesting that such geometry is a more stable configuration. In this study, the profile of a concave slope was idealized by a circular arc defined by a single variable, the mid-chord offset (MCO). The proposed concave profile formulation was incorporated into a limit equilibrium–based log spiral slope stability method. Stability charts are presented to show the stability number, MCO, and mode of failure for homogeneous slopes corresponding to the most stable configuration under static and pseudostatic conditions. It is shown that concave profiles can significantly improve the stability of slopes. Under seismic conditions, the impact of concavity is most pronounced. Good agreement was demonstrated upon comparison of the results from the proposed method against those attended from a rigorous upper bound limit analysis. The proposed methodology, along with recent advances in construction technology, can be employed to use concave profiles in trenches, open mine excavations, earth retaining systems, and naturally cemented and stabilized soil slopes. The results presented provide a useful tool for preliminary evaluation for adopting such concave profiles in practice.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


2011 ◽  
Vol 422 ◽  
pp. 688-692
Author(s):  
Xiao Hei He ◽  
Geng You Han ◽  
Rui Hua Xiao

Abstract:Since the Wenchuan earthquake happened, the slope stability had been paid much more attention. The safety factor is an important parameter that can be used to evaluate the stability of slope. The pseudo-static method that based on limit equilibrium and the method of numerical simulation can calculate the safety factor accurately, but the velocity that gets the result is slow. If we can establish the relationship between safety factor and some other parameters, then we can calculate the safety factor by using the relationship more quickly. This paper establishes much relationship, such as the relationship between the rock mechanics parameters and the average danymic safety factor, the relationship between the rock mechanics parameters and the ratio of average danymic safety factor to static safety factor, the relationship between the rock mechanics parameters and the average earthquake acceleration coefficient, the relationship between the average earthquake acceleration coefficient and the ratio of average danymic safety factor to static safety factor, and the relationship between the earthquake acceleration coefficient and the ratio of danymic safety factor to static safety factor on the condition of different rock mass.


1983 ◽  
Vol 20 (4) ◽  
pp. 661-672 ◽  
Author(s):  
R. K. H. Ching ◽  
D. G. Fredlund

Several commonly encountered problems associated with the limit equilibrium methods of slices are discussed. These problems are primarily related to the assumptions used to render the inherently indeterminate analysis determinate. When these problems occur in the stability computations, unreasonable solutions are often obtained. It appears that problems occur mainly in situations where the assumption to render the analysis determinate seriously departs from realistic soil conditions. These problems should not, in general, discourage the use of the method of slices. Example problems are presented to illustrate these difficulties and suggestions are proposed to resolve these problems. Keywords: slope stability, limit equilibrium, method of slices, factor of safety, side force function.


2018 ◽  
Vol 36 (4) ◽  
pp. 361-372 ◽  
Author(s):  
Afshin Khoshand ◽  
Ali Fathi ◽  
Milad Zoghi ◽  
Hamidreza Kamalan

One of the most common and economical methods for waste disposal is landfilling. The landfill cover system is one of the main components of landfills which prevents waste exposure to the environment by creating a barrier between the waste and the surrounding environment. The stability and integrity of the landfill cover system is a fundamental part of the design, construction, and maintenance of landfills. A reinforced tapered landfill cover system can be considered as a practical method for improving its stability; however, the simultaneous effects of seismic and seepage forces in the reinforced tapered landfill cover system have not been studied. The current paper provides a solution based on the limit equilibrium method in order to evaluate the stability of a reinforced tapered landfill cover system under seismic and seepage (both horizontal and parallel seepage force patterns) loading conditions. The proposed analytical approach is applied to different design cases through parametric study and the obtained results are compared to those derived from literature. Parametric study is performed to illustrate the sensitivity of the safety factor (FS) to the different design parameters. The obtained results reveal that parameters which describe the geometry have limited effects on the stability of the landfill cover system in comparison to the rest of the studied design parameters. Moreover, the comparisons between the derived results and available methods demonstrate good agreement between obtained findings with those reported in the literature.


2021 ◽  
Author(s):  
Hua Liu ◽  
Zelin Niu ◽  
Yuanhong Dong ◽  
Naifei Liu ◽  
Shuocheng Zhang

Abstract In order to study the influence of chemical solution on the stability of loess embankment in seasonally frozen regions, the compression index, shear strength index and embankment safety factor of compacted loess fillings that were treated by different concentrations of chemical solution were analyzed through laboratory test and slope stability analysis program. The experimental results showed that the collapsible coefficients of remolded loess treated by different chemical solution will all increase which comparing the distilled water, and then will change again after freezing-thawing cycles (FTCs). The compression index of undisturbed loess will show regularity with the increase of chemical solution concentration. The shear strength of remolded loess also changed under the chemical solution and FTCs. Besides, simulation of the strength parameters by limit equilibrium methods showed that the safety factor of loess embankment with treatment of solution was significantly higher than that of untreated one, and the FTC would cause a further deterioration. The embankment stability improved after treated by chemical solution without considering seepage of rainwater. These results would provide a novel method to the problem of embankment stability related to environmental condition changes.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Adam J. Lobbestael ◽  
Adda Athanasopoulos-Zekkos ◽  
Josh Colley

The effects of progressive failure on flood embankments with underlying thin layers of soft, sensitive soils are investigated. Finite element analysis allows for investigation of strain-softening effects and progressive failure in soft and sensitive soils. However, limit equilibrium methods for slope stability analysis, widely used in industry, cannot capture these effects and may result in unconservative factors of safety. A parametric analysis was conducted to investigate the effect of thin layers of soft sensitive soils on the stability of flood embankments. A flood embankment was modeled using both the limit equilibrium method and the finite element method. The foundation profile was altered to determine the extent to which varying soft and sensitive soils affected the stability of the embankment, with respect to progressive failure. The results from the two methods were compared to determine reduction factors that can be applied towards factors of safety computed using limit equilibrium methods, in order to capture progressive failure.


The design of open-cut slopes and embankments, foundations, levees, and earth-dam cross-sections is based primarily on stability considerations. There are many causes and types of earth instability. There are also many ways of analyzing the stability of slopes. The chapter considers the limit equilibrium approach, which aims essentially to determine a factor of safety, F, that would ensure a slope does not fail. The chapter considers the analysis of stability of infinite slopes based on translational type of failure and the analysis of finite slopes using the Swedish Method, Method of Slices, Bishop Simplified Method, Friction Circle Method, and the Translational Method. The solution of equations developed for the analysis of stability of slopes can be tedious and time consuming. A way of reducing the amount of calculation required in slope stability studies is by use of charts based on geometric similarity. The chapter discusses how Taylor (1948) and Janbu (1964) charts are used in stability analysis of slopes. Finally, the chapter discusses ways to reduce the risk of instability in slopes.


Sign in / Sign up

Export Citation Format

Share Document