THE KINETICS OF THE FORMATION OF THE MONOSULPHATO COMPLEX OF IRON (III) IN AQUEOUS SOLUTION

1962 ◽  
Vol 40 (9) ◽  
pp. 1836-1845 ◽  
Author(s):  
G. G. Davis ◽  
W. MacF. Smith

The kinetics of formation of the monosulphato complex of iron (III) has been examined spectrophotometrically using a continuous-flow technique over the range of temperatures 15.6 to 34.5 °C in an aqueous medium of ionic strength 0.5 and a range of concentrations of hydrogen ions 0.05 to 0.30 M. The experimental data may be interpreted on the assumption that the significant reactions are a bimolecular association opposed by a first-order dissociation [Formula: see text] For the forward reaction ΔH≠ is 18.0 kcal mole−1 and ΔS≠ is 19.4 cal mole−1 deg−1.

1957 ◽  
Vol 35 (12) ◽  
pp. 1496-1503 ◽  
Author(s):  
K. A. Holbrook ◽  
Ludovic Ouellet

The kinetics of the non-enzymatic hydrolysis of adenosine diphosphate in aqueous solution have been studied at pH 3.5 to 10.5 and temperatures from 80° to 95 °C. The reaction has been followed by measuring colorimetrically the inorganic phosphate liberated according to the over-all reaction[Formula: see text]The reaction has been found to be first order with respect to ADP concentration and to be catalyzed by hydrogen ions. From rate studies at pH 8.0 an activation energy of 24.2 kcal./mole was derived. A mechanism is proposed to account for the observed facts and the mechanism for the hydrolysis of adenosine triphosphate is also discussed.


2013 ◽  
Vol 803 ◽  
pp. 157-160
Author(s):  
Zhen Zhen Kong ◽  
Dong Mei Jia ◽  
Su Wen Cui

The composite weakly basic resin (D301Fe) was prepared and examined using scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption kinetics of glyphosate from aqueous solution onto composite weakly basic resin (D301Fe) were investigated under different conditions. The experimental data was analyzed using various adsorption kinetic models like pseudo-first order, the pseudo-second order, the Elovich and the parabolic diffusion models to determine the best-fit equation for the adsorption of glyphosate onto D301Fe. The results show that the pseudo-second order equation fitted the experimental data well and its adsorption was chemisorption-controlled.


1970 ◽  
Vol 48 (7) ◽  
pp. 1054-1058 ◽  
Author(s):  
T. W. Swaddle ◽  
W. E. Jones

The kinetics of the hydrogen-ion-independent pathway for the replacement of fluoride in aqueous (NH3)5CoF2+ by H2O have been reinvestigated using a specific fluoride-ion electrode, with due regard for the concomitant autocatalytic loss of the ammine ligands. In perchlorate media of ionic strength 0.1 M, the first-order rate coefficient is 1.22 × 10−6 s−1 at 45°, and the kinetics are represented by ΔH* = 24.4 kcal mole−1 and ΔS* = −9 cal deg−1 mole−1 over the range 35–75° at least. The relationship of these data to those for the aquation of other species of the type ML5Xn+ is discussed.


1960 ◽  
Vol 38 (4) ◽  
pp. 567-575 ◽  
Author(s):  
D. Pouli ◽  
W. MacF. Smith

The kinetics of the reactions involved in the formation of the mono–fluoro complex of iron (III) in aqueous solutions have been examined spectrophotometrically at ionic strength 0.5 and over the temperature interval 0.1 to 12.1 °C. The results are interpretable on the assumption that the following two reactions contribute significantly to the rate Fe+++ + F− = FeF++ and Fe+++ + HF = FeF++ + H+, the former having a heat of activation of 22.8 ± 2.5 kcal mole−1 and an entropy of activation of 35 ± 9 cal deg−1 mole−1, the latter having a heat of activation of 8.7 ± 0.7 kcal mole−1 and an entropy of activation of −24.5 ± 3 cal deg−1 mole−1.


2003 ◽  
Vol 1 (3) ◽  
pp. 233-241 ◽  
Author(s):  
Dumitru Oancea ◽  
Mihaela Puiu

AbstractThe kinetics of the auto-oxidation of 2-aminophenol (OAP) to 2-amino-phenoxazin-3-one (APX) was followed in air-saturated aqueous solutions and the influence of temperature and pH on the auto-oxidation rate was studied. The kinetic analysis was based on a spectrophotometric method following the increase of the absorbance of APX. The process follows first order kinetics according to the rate law—d[OAP]/dt=k′[OAP]. The experimental data, within the pH range 4–9.85, were analyzed using both differential and incremental methods. The temperature variation of the overall rate constant was studied at pH=9.85 within the range 25–50°C and the corresponding activation energy was evaluated.


2017 ◽  
Vol 2 (1) ◽  
pp. 37-43
Author(s):  
Ahmed Adetoro ◽  
Suleiman O. Idris ◽  
Ameh D. Onu ◽  
Friday G. Okibe

AbstractKinetics of oxidation of Lysine (Lys) and mechanisms by μ-peroxo bis[bis(ethylenediamine)succinimidato-dicobalt(III)]dinitratedihydrate; [LCo(μ-O2)CoL](NO3)2.2H2O (L = suc(en)2), hereafter the complex, was investigated at 420 nm wavelength of maximum absorption of the complex under the conditions hydrogen ions concentration = 1.8 × 10−2 mol dm−3, temperature = 24 ± 1 °C, [LCo(μ-O2)CoL2+] = 1.4 × 10−4 mol dm−3 and ionic strength = 0.5 mol dm−3. First order in [LCo(μ-O2)CoL2+] and [Lys] were obtained but inverse first order in [H+]. The proposed overall rate equation is as shown:$$Rate = ({{k_1 } \over {k_2 }} + {{K_1 k_3 } \over {k_4 }}{1 \over {[H^ + ]}})[LCo(\mu O_2 )CoL^{2 + } ][Lys]$$Rate of the reaction decreases when hydrogen ions concentration increase and exhibited converse effect with increase in concentration of ionic strength from 0.1 – 1.3 mol dm−3. Added cations and anions affected the reaction rate and the Michaelis-Menten plot passed through the origin indicating no absence of intermediate complex in the electron transfer processes. Putting all the results obtained together, the most probable reaction mechanism is in favour of outer-sphere and an appropriate rate law is established using steady state approximation.


2017 ◽  
Vol 0 (0) ◽  
Author(s):  
A Adetoro ◽  
S.O. Idris ◽  
A.D. Onu ◽  
F.G Okibe

Abstract Kinetics of oxidation of Lysine (Lys) and mechanisms by μ-peroxo bis[bis(ethylenediamine)succinimidato-dicobalt(III)]dinitratedihydrate; [LCo(μ-O2)CoL](NO3)2.2H2O (L = suc(en)2), hereafter the complex, was investigated at 420 nm wavelength of maximum absorption of the complex under the conditions hydrogen ions concentration = 1.8 × 10-2 mol dm-3, temperature = 24 ± 1 °C, [LCo(μ-O2)CoL2+] = 1.4 × 10-4 mol dm-3 and ionic strength = 0.5 mol dm-3. First order in [LCo(μ- O2)CoL2+] and [Lys] were obtained but inverse first order in [H+]. The proposed overall rate equation is as shown: Rate of the reaction decreases when hydrogen ions concentration increase and exhibited converse effect with increase in concentration of ionic strength from 0.1 - 1.3 mol dm-3. Added cations and anions affected the reaction rate and the Michaelis-Menten plot passed through the origin indicating no absence of intermediate complex in the electron transfer processes. Putting all the results obtained together, the most probable reaction mechanism is in favour of outer-sphere and an appropriate rate law is established using steady state approximation.


1970 ◽  
Vol 48 (11) ◽  
pp. 1639-1644 ◽  
Author(s):  
Clive M. Elson ◽  
I. J. Itzkovitch ◽  
John A. Page

The formation of nitrogen monomers by the reaction of Ru(NH3)5(H2O)2+ and cis-Ru(NH3)4(H2O)22+ with N2 has been shown to be first order in N2 and second order overall. The formation of bridging N2 dimers by the reaction of the ruthenium(II) pentaammine and tetraammine with the monomers has been shown to be second order overall.The reactions were studied in a H2SO4–K2SO4 electrolyte pH 3.3, μ = 0.30. The ruthenium(II) species were prepared by controlled potential reduction of known ruthenium(III) species at −0.50 V at a Hg cathode. The reactions of the reduced species with N2 or the monomers were followed spectrophotometrically.The second order rate constant at 25 °C and the activation energy for the substrate Ru(NH3)5(H2O)2+ with the respective nucleophiles are: N2, 8.0 × 10−2 M−1 s−1, 22.0 ± 0.1 kcal/mole; Ru(NH3)5N22+, 3.6 × 10−2 M−1 s−1, 19.9 ± 0.5 kcal/mole; Ru(NH3)4(H2O)N22+, 2.7 × 10−2 M−1 s−1, 20.4 ± 0.8 kcal/mole. For the substrate cis-Ru(NH3)4(H2O)22+ the values are: N2, 1.0 × 10−1 M−1 s−1, 20.4 ± 0.2 kcal/mole; Ru(NH3)5N22+, 6.8 × 10−2 M−1 s−1, 18.2 ± 0.1 kcal/mole; Ru(NH3)4(H2O)N22+, 7.2 × 10−2 M −1 s−1, 17.1 ± 0.2 kcal/mole.


1992 ◽  
Vol 57 (7) ◽  
pp. 1451-1458 ◽  
Author(s):  
Refat M. Hassan

The kinetics of oxidation of arsenic(III) by hexachloroiridate(IV) at lower acid concentrations and at constant ionic strength of 1.0 mol dm-3 have been investigated spectrophotometrically. A first-order reaction in [IrCl62-] and fractional order with respect to arsenic(III) have been observed. A kinetic evidence for the formation of an intermediate complex between the hydrolyzed arsenic(III) species and the oxidant was presented. The results showed that decreasing the [H+] is accompanied by an appreciable acceleration of the rate of oxidation. The activation parameters have been evaluated and a mechanism consistent with the kinetic results was suggested.


2003 ◽  
Vol 07 (03) ◽  
pp. 139-146 ◽  
Author(s):  
Peter Hambright ◽  
Ines Batinić-Haberle ◽  
Ivan Spasojević

The relative reactivities of the tetrakis( N -alkylpyridinium- X - yl )-porphyrins where X = 4 (alkyl = methyl, ethyl, n -propyl) , X = 3 (methyl) , and X = 2 (methyl, ethyl, n -propyl, n -butyl, n -hexyl, n -octyl) were studied in aqueous solution. From the ionic strength dependence of the metalation rate constants, the effective charge of a particular cationic porphyrin was usually larger when copper(II) rather than zinc(II) was the reactant. The kinetics of ZnOH + incorporation and the acid catalyzed removal of zinc from the porphyrins in 1.0 M HCl were also studied. In general, the more basic 4- (para-) and 3- (meta-) isomers were the most reactive, followed by the less basic 2- (ortho-) methyl to n -butyl derivatives, with the lipophilic ortho n -hexyl and n -octyl porphyrins the least reactive.


Sign in / Sign up

Export Citation Format

Share Document