Nonempirical s.c.f. calculations on sulfur atom, hydrogen sulfide, and dihydrogen sulfoxide

1968 ◽  
Vol 46 (8) ◽  
pp. 1205-1214 ◽  
Author(s):  
A. Rauk ◽  
I. G. Csizmadia

This paper reports the first attempt to use Gaussian basis sets in nonempirical self-consistent field (s.c.f.) calculations on sulfur-containing chemical systems. Exponents for Gaussian-type functions (G.t.f.) on S atom are given for the minimal basis set. The optimization procedure is described and the optimized exponents utilized on calculations on S atom, H2S, and the hypothetical dihydrogen sulfoxide (H2SO). Calculations by the minimal basis set of (G.t.f.), using these exponents, gave a value for the HSH angle of H2S that agrees well with the experimentally determined value. Calculations of H2SO support a "multiple bond" picture of the S—O bond.

1992 ◽  
Vol 70 (6) ◽  
pp. 1822-1826 ◽  
Author(s):  
G. L. Malli ◽  
A. B. F. Da Silva ◽  
Yasuyuki Ishikawa

Matrix Dirac–Fock–Coulomb and Dirac–Fock–Breit self-consistent field calculations are performed for a number of neutral atoms. He (Z = 2) through Xe (Z = 54), using the universal Gaussian basis set (18s, 12p, 11d) reported recently by Da Silva etal. The total Dirac–Fock–Coulomb, the Dirac–Fock–Breit, and the Breit interaction energies calculated with this universal Gaussian basis set are in good agreement with the corresponding values obtained by using an extensive well-tempered Gaussian basis set for the He through Ca (Z = 20) atoms. Although this universal Gaussian basis set is inadequate for the calculation of total Dirac–Fock–Coulomb and Dirac–Fock–Breit energies for the Kr, Sr, and Xe atoms, the Breit interaction energies calculated with this basis for these three atoms are in very good agreement with the corresponding Breit interaction energies obtained by using the extensive well-tempered Gaussian basis sets. Work is in progress to generate a more extensive and energetically better universal Gaussian basis set for He through Xe for its use in non-relativistic Hartree–Fock as well as Dirac–Fock self-consistent field calculations on polyatomics involving heavy atoms.


1984 ◽  
Vol 39 (5) ◽  
pp. 495-498
Author(s):  
V. Renugopalakrishnan ◽  
R. Walter

An ab initio molecular orbital technique was used to investigate the rotational barrier about the disulphide bridge in dimethyl disulphide. Various minimal and extended basis sets were used in the calculations. The chosen minimal basis set was the STO-3G set, and the extended basis sets were the STO 4-31G set, the Dunning and Hay set consisting of contracted Gaussian basis sets: [2s], [3s, 2p] and [6s, 4p] for H, C, and S atoms, and the Dunning and Hay basis set augmented with a d-type function on S atoms. The total energy was calculated as a function of the torsion angle about the disulphide bond. The barrier to rotation about this bond was found to be two-fold in nature, in accordance with previous findings. The heights of the barriers were observed to depend upon the basis set and input geometry. For our particular choice of basis sets and input geometry, the calculated value of the eis and trans barriers ranged from 12.68 to 16.49 kcal/mol and from 6.23 to 8 kcal/mol, respectively. Inclusion of a d-type function in the basis sets was found to result in better agreement between the calculated and experimental values, thereby emphasizing the need for considering 3d orbitals of sulphur in MO calculations


1973 ◽  
Vol 26 (7) ◽  
pp. 1381 ◽  
Author(s):  
FR Burden ◽  
BT Hart

A quantitative assessment of the importance of basis set variation at the minimal basis level of accuracy has been carried out. A number of basis sets, using Gaussian lobe functions, were tested by calculating the energy and one-electron properties for a number of molecules and the results used to select an optimum sized accurate basis set. This basis set consisted of a five-component 1s-Gaussian type orbital (GTO), a three-component 2s-GTO and a three-component 2p-GTO for each first row atom, and a three-component 1s-GTO for hydrogen. The accuracy of wave functions calculated with the minimal basis sets was very sensitive to changes in the 2p-GTO. ��� A Gaussian lobe basis set of optimum size for use with large molecules is given. The results of testing this set by calculating several one-electron properties for ten molecules, together with confidence limits, are also presented.


2020 ◽  
Vol 22 (46) ◽  
pp. 27037-27052
Author(s):  
Quan Manh Phung ◽  
Masaya Hagai ◽  
Xiao-Gen Xiong ◽  
Takeshi Yanai

A new family of polarization consistent basis set, combined with the projector augmented wave method, was introduced. The basis sets are compact and have good performance as compared to conventional all-electron basis sets in DFT calculations.


1992 ◽  
Vol 70 (2) ◽  
pp. 513-519 ◽  
Author(s):  
Roberto Moccia ◽  
Pietro Spizzo

By using the K-matrix technique for the continuum states that was previously employed with particularly diffuse L2 basis sets, it is shown that GTO bases are also capable of yielding accurate values for the properties belonging to the electronic continuum. The method has been tested for helium and proved of satisfactory accuracy also for the analysis of the autoionizing states. The results include the phase shifts of the continuum states of the 1Seand 1P° manifolds, the properties of the lowest resonances of these symmetries, the ground state photoionization cross section, and the S contribution to the 1s2p1P° photoionization cross section. The results obtained suggest that the proposed technique should be useful for computing molecular differential photoionization cross sections by exploiting the widely used codes that employ GTO bases. Keywords: photoionization, Gaussian basis sets, helium, autoionizing states.


1969 ◽  
Vol 47 (1) ◽  
pp. 113-135 ◽  
Author(s):  
Arvi Rauk ◽  
Saul Wolfe ◽  
I. G. Csizmadia

A survey of the experimental data on the structures of α-sulfonyl and α-sulfinyl carbanions is presented as an introduction to the present work, a theoretical study of hydrogen methyl sulfoxide (HMSO) and hydrogen methylsulfinyl anion (HMSO−) by nonempirical self consistent field (s.c.f.) calculations using Gaussian basis sets. Calculations on dimethyl sulfoxide (DMSO) and its conjugate base (DMSO−) are also presented and fully justify the choice of HMSO and HMSO− for the detailed work. A conformational energy surface (total energy as a function of rotation about the C—S bond and inversion of the carbanion angle) for HMSO− is presented and used to determine the stereochemical fate of a carbanion generated next to a sulfinyl group. Predictions are made concerning the probable course of proton exchange next to S—O and an explanation is offered for the experimental facts concerning exchange in sulfoxides. A very significant finding is that postulation of d-orbital conjugation is not essential to explain the asymmetry of α-sulfinyl carbanions.


1988 ◽  
Vol 53 (10) ◽  
pp. 2214-2229 ◽  
Author(s):  
Małgorzata M. Szczęśniak ◽  
Steve Scheiner

High-quality Gaussian basis sets of the well-tempered type, containing three sets of polarization functions on all atoms, are used to investigate the interaction of Li+ with HF, OH2, and NH3. These sets reproduce the SCF and MP2 energies of the various monomers very well and, moreover, accurately treat the multipole moments and polarizabilities of the monomers. When applied to the complexes, the sets are essentially free of primary and secondary basis set superposition error at the SCF level; MP2 extension effects are also completely negligible while basis set superposition effects are small but non-negligible. Analysis of the correlation corrections to the molecular properties, coupled with comparison of the interaction of the bases with a point charge, provides a straightforward explanation of correlation contributions to the interaction energy. Recommendations are provided to guide selection of basis sets for molecular interactions so as to avoid distortion of the various components.


2004 ◽  
Vol 59 (10) ◽  
pp. 1153-1176 ◽  
Author(s):  
Thomas Zuschneid ◽  
Holger Fischer ◽  
Thomas Handel ◽  
Klaus Albert ◽  
Günter Häfelinger

AbstractHigh-resolution gas phase measurements of 1H NMR spectra at 400 MHz and atmospheric pressure of seven small hydrocarbons are presented. The developed new method and the experimental set-up are described. Ab initio GIAO MO calculations of 1H and 13C NMR absolute shieldings on the HF, MP2 and B3LYP levels using 25 standard gaussian basis sets are reported for these hydrocarbons, based on experimental re distances. The measured gas phase 1H chemical shifts have been converted to an absolute σ0 shielding scale by use of the literature shielding of methane. These and gas phase 13C literature values have been transferred with literature ZPV data to estimated σeexp shieldings which are used to evaluate the basis set dependence of the calculated σe shieldings utilizing linear least squares regressions. Exponential extrapolations of Dunning basis set calculations allow the determination of basis set limits for 1H and 13C shieldings. 1H and 13C chemical shifts have been derived from the HF calculated shieldings with shieldings of TMS which has been geometry optimized and GIAO calculated in each basis. Standard deviations (esd) as low as 0.09 ppm for 1H and 0.76 ppm for 13C calculations have been obtained.The statistically best basis set for simultaneous calculation of 1H and 13C absolute shieldings or relative shifts is 6-311G* within the HF and B3LYP methods. Aiming for highest accuracy and precision, 1H and 13C have to be treated separately. In this case, best results are obtained using MP2/6-311G** or higher for 1H shieldings and MP2/cc-pVTZ for 13C shieldings.


2017 ◽  
Author(s):  
Saurav Dutta ◽  
Bhabani S. Mallik

<div> <table> <tr> <td> <p>Knowledge of the transition state is crucial in determining the mechanism in order to diversify the applicability of the reaction. The computational method is the most convenient way to locate the transition state in the absence any efficient experimental technique. We have applied the method of the transition state search on the Diels-Alder reaction computationally by means of combined linear synchronous transit and quadratic synchronous transit methods. Here we have shown that, of various methods adopted, BOP functional with numerical basis set provides a computationally economical alternative to the widely used B3LYP functional with higher Gaussian basis sets in the transition state search. It can reproduce the experimental parameters like activation energy of the Diels-Alder reaction, and the calculations are much faster than the corresponding other functional based calculations.</p> </td> </tr> </table> </div>


Sign in / Sign up

Export Citation Format

Share Document