Kinetics and mechanism of the oxidation of several ketones by tris(1,10-phenanthroline)Fe(III) in aqueous acid medium

1977 ◽  
Vol 55 (15) ◽  
pp. 2900-2908 ◽  
Author(s):  
Flora T. T. Ng ◽  
Patrick M. Henry

The kinetics of the oxidation of acetone, 2-butanone, 2,4-dimethyl-3-pentanone, 3-methyl-2-butanone, and 3-pentanone by tris(1,10-phenanthroline)Fe(III) (ferriin) were determined in aqueous solutions containing either sulphuric or perchloric acid in the presence or absence of air. The kinetics are consistent only with a mechanism involving oxidation of the enol tautomer by ferriin. The rate constants of enolization calculated from this kinetic analysis agree well with the literature values. Relative reactivity of the four enols from symmetrical ketones were found to be in the order: 2,4-dimethyl-3-pentanone > 3-pentanone > cyclohexanone > acetone. The rate of oxidation of the enol form of 2,4-dimethyl-3-pentanone is approximately 1000 fold larger than that of the enol form of acetone, indicating that electron-donating methyl substituents enhance the rate of electron transfer from the enol tautomer to ferriin.Kinetics of the oxidation carried out in air were generally the same as in its absence; the rates of oxidation were found to be slower by a factor of 2 in most cases. This suggests that the initially formed enol radical reacts with O2 rather than a second ferriin to give the oxidized product. At high [ferriin] in air, pseudo zero-order kinetics were observed initially as in its absence. However, above about 50% reduction of ferriin, the reaction appears to involve auto-catalysis and was not studied further.


1955 ◽  
Vol 33 (12) ◽  
pp. 1780-1791 ◽  
Author(s):  
R. H. Betts

The kinetics of oxidation of uranium (IV) by iron (III) in aqueous solutions of perchloric acid have been investigated at four temperatures between 3.1 °C. and 24.8 °C. The reaction was followed by measurement of the amount of ferrous ion formed. For the conditions (H+) = 0.1–1.0 M, ionic strength = 1.02, (FeIII) = 10−4–10−5 M, and (UIV) = 10−4–10−5 M, the observed rate law is d(Fe2+)/dt = −2d(UIV)/dt[Formula: see text]K1 and K2 are the first hydrolysis constants for Fe3+ and U4+, respectively, and K′ and K″ are pseudo rate constants. At 24.8 °C., K′ = 2.98 sec.−1, and K″ = 10.6 mole liter−1 sec−1. The corresponding temperature coefficients are ΔH′ = 22.5 kcal./mole and ΔH″ = 24.2 kcal./mole. The kinetics of the process are consistent with a mechanism which involves, as a rate-controlling step, electron transfer between hydrolyzed ions.



2008 ◽  
Vol 55-57 ◽  
pp. 757-760 ◽  
Author(s):  
A. Kleawkla ◽  
Robert Molloy ◽  
W. Naksata ◽  
Winita Punyodom

Two novel tin(II) alkoxides, namely: tin(II) hexoxide, Sn(OC6H13)2, and tin(II) octoxide, Sn(OC8H17)2, have been synthesized for use as coordination-insertion initiators in the bulk ring-opening polymerization of ε-caprolactone. The kinetics of the polymerization reactions were studied at 140 °C by dilatometry. It was found that both alkoxides were slow to dissolve in the ε-caprolactone monomer due to their molecular aggregation in the solid state. As a result, the slow solubilization of the initiators gave rise to deviations from the expected first-order kinetics. Instead, the kinetic results adhered more closely to zero-order kinetics with apparent zero-order rate constants k0 of 6.58 x 10-2 and 4.63 x 10-2 mol l-1 min-1 for the hexoxide and octoxide respectively



Author(s):  
Karuppasamy Dharmaraj ◽  
Dirk Dattler ◽  
Heike Kahlert ◽  
Uwe Lendeckel ◽  
Felix Nagel ◽  
...  

AbstractThe effects of the chemical environment of menaquinones (all-trans MK-4 and all-trans MK-7) incorporated in lipid monolayers on mercury electrodes have been studied with respect to the thermodynamics and kinetics of their electrochemistry. The chemical environment relates to the composition of lipid films as well as the adjacent aqueous phase. It could be shown that the addition of all-trans MK-4 to TMCL does not change the phase transition temperatures of TMCL. In case of DMPC monolayers, the presence of cholesterol has no effect on the thermodynamics (formal redox potentials) of all-trans MK-7, but the kinetics are affected. Addition of an inert electrolyte (sodium perchlorate; change of ionic strength) to the aqueous phase shifts the redox potentials of all-trans MK-7 only slightly. The formal redox potentials of all-trans MK-4 were determined in TMCL and nCL monolayers and found to be higher in nCL monolayers than in TMCL monolayers. The apparent electron transfer rate constants, transfer coefficients and activation energies of all-trans MK-4 in cardiolipins have been also determined. Most surprisingly, the apparent electron transfer rate constants of all-trans MK-4 exhibit an opposite pH dependence for TMCL and nCL films: the rate constants increase in TMCL films with increasing pH, but in nCL films they increase with decreasing pH. This study is a contribution to understand environmental effects on the redox properties of membrane bond redox systems. Graphical abstract



2004 ◽  
Vol 812 ◽  
Author(s):  
Yinfeng Zong ◽  
James J. Watkins

AbstractThe kinetics of copper deposition by the hydrogen-assisted reduction of bis(2,2,7- trimethyloctane-3,5-dionato)copper in supercritical carbon dioxide was studied as a function of temperature and precursor concentration. The growth rate was found to be as high as 31.5 nm/min. Experiments between 220 °C and 270 °C indicated an apparent activation energy of 51.9 kJ/mol. The deposition kinetics were zero order with respect to precursor at 250 °C and 134 bar and precursor concentrations between 0.016 and 0.38 wt.% in CO2. Zero order kinetics over this large concentration interval likely contributes to the exceptional step coverage obtained from Cu depositions from supercritical fluids.



Author(s):  
Aigul A. Maksyutova ◽  
Elvina R. Khaynasova ◽  
Yuriy S. Zimin

The ultraviolet spectroscopy method has been applied to study the kinetics of the ozone reactions with nitrogenous bases (NB), namely adenine and cytosine in aqueous solutions. At the first research stage, the range of NB working concentrations has been determined. It was found that linear dependences between optical densities and concentrations of nitrogenous bases aqueous solutions are quite reliable, with correlation coefficients r ≥ 0.998, are satisfied up to [NB] = 2.3 ∙ 10–4 mol/l. According to the Bouguer-Lambert-Beer law, adenine and cytosine extinction coefficients in aqueous solutions were determined and subsequently used to calculate their residual concentrations. At the next stage, the kinetics of nitrogenous bases ozonized oxidation was studied with equal initial concentrations of the starting substances ([NB]0 = [О3]0). The results revealed that the kinetic consumption curves of the starting reagents are fairly well linearized (r ≥ 0.996) in the second-order reaction equation coordinates. As found with the bubbling installation, 1 mol of the absorbed ozone falls on 1 mol of the used NB. Thus, the reactions of ozone with adenine and cytosine explicitly proceed according to the second-order kinetic laws (the first – according to О3 and the first – according to NB). The rate constants were calculated by the integral reaction equations, the values of which indicate a higher ozone reactivity in relation to nitrogen bases. The temperature dependences of the second-order rate constants was studied ranging 285-309 K, and the activation parameters (pre-exponential factors and activation energies) of the ozone reactions with adenine and cytosine in aqueous solutions were determined.



1982 ◽  
Vol 47 (7) ◽  
pp. 1773-1779 ◽  
Author(s):  
T. P. Radhakrishnan ◽  
A. K. Sundaram

The paper is a detailed study of the cyclic voltammetric behaviour of Eu3+ at HMDE in molar solutions of KCl, KBr, KI, KSCN and in 0.1M-EDTA solution with an indigenously built equipment. The computed values of the rate constants at various scan rates show good agreement with those reported by other electrochemical methods. In addition, the results indicate participation of a bridged activated complex in the electron-transfer step, the rate constants showing the trend SCN- > I- > Br- > Cl- usually observed for bridging order of these anions in homogeneous electron-transfer reactions. The results for Eu-EDTA system, however, indicate involvement of an outer sphere activated complex in the electrode reaction.



1992 ◽  
Vol 282 ◽  
Author(s):  
K. V. Guinn ◽  
J. A. Mucha

ABSTRACTThe kinetics of deposition of SiO2 by the reaction of tetramethylsilane (TMS) with ozone (O3) has been studied over the temperature range 180 – 380° C and compared with available data for the same process using tetraethoxysilane (TEOS). Both processes exhibit the same activation energy (17 kcal/mole) below 300 ° C which falls-off at higher temperatures due to transport limitations. Transition from first- to zero-order kinetics occurs with increasing concentrations of TMS and O3, which gives an overall O3/TMS consumption ratio of 10 at 258° C and5 at 325° C. TEOS is estimated to be 5 times more reactive than TMS above 300° C and over 10 times more reactive in the kinetically-limited regime below 300° C. Results suggest that O3-induced SiO2 deposition proceeds via surface reactions and is limited by heterogeneous decomposition of ozone.



Sign in / Sign up

Export Citation Format

Share Document