scholarly journals Syntheses and antibacterial activity of novel 6-fluoro-7-(gem-disubstituted piperazin-1-yl)-quinolines

1992 ◽  
Vol 70 (5) ◽  
pp. 1328-1337 ◽  
Author(s):  
Daniel T. W. Chu ◽  
Akiyo K. Claiborne ◽  
Jacob J. Clement ◽  
Jacob J. Plattner

A series of quinoline and naphthyridine antibacterial agents possessing an acyclic or cyclic gem-disubstituted piperazine substituent at the C-7 position have been prepared and evaluated in vitro and in vivo for antibacterial activity against a variety of Gram-positive and Gram-negative organisms. They are, however, not as active as quinolones or naphthyridines with a monosubstituted piperazine substituent at C-7. The chemical synthesis of these derivatives is also described.

2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2015 ◽  
Vol 25 (2-3) ◽  
pp. 79-93 ◽  
Author(s):  
Joseph W. Lengeler

<b><i>Past:</i></b> The title ‘PTS 50 or The PTS after 50 years' relies on the first description in 1964 of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS) by Kundig, Gosh and Roseman [Proc Natl Acad Sci USA 1964;52:1067-1074]. The system comprised proteins named Enzyme I, HPr and Enzymes II, as part of a novel PTS for carbohydrates in Gram-negative and Gram-positive bacteria, whose ‘biological significance remained unclear'. In contrast, studies which would eventually lead to the discovery of the central role of the PTS in bacterial metabolism had been published since before 1942. They are primarily linked to names like Epps and Gale, J. Monod, Cohn and Horibata, and B. Magasanik, and to phenomena like ‘glucose effects', ‘diauxie', ‘catabolite repression' and carbohydrate transport. <b><i>Present:</i></b> The pioneering work from Roseman's group initiated a flood of publications. The extraordinary progress from 1964 to this day in the qualitative and in vitro description of the genes and enzymes of the PTS, and of its multiple roles in global cellular control through ‘inducer exclusion', gene induction and ‘catabolite repression', in cellular growth, in cell differentiation and in chemotaxis, as well as the differences of its functions between Gram-positive and Gram-negative bacteria, was one theme of the meeting and will not be treated in detail here. <b><i>Future:</i></b> At the 1988 Paris meeting entitled ‘The PTS after 25 years', Saul Roseman predicted that ‘we must describe these interactions [of the PTS components] in a quantitative way [under] in vivo conditions'. I will present some results obtained by our group during recent years on the old phenomenon of diauxie by means of very fast and quantitative tests, measured in vivo, and obtained from cultures of isogenic mutant strains growing under chemostat conditions. The results begin to hint at the problems relating to future PTS research, but also to the ‘true science' of Roseman.


RSC Advances ◽  
2014 ◽  
Vol 4 (99) ◽  
pp. 56031-56040 ◽  
Author(s):  
Ilaria Rago ◽  
Chandrakanth Reddy Chandraiahgari ◽  
Maria P. Bracciale ◽  
Giovanni De Bellis ◽  
Elena Zanni ◽  
...  

ZnO micro and nanorods, produced through simple and inexpensive techniques, resulted to be strong antimicrobials against Gram-positive bacteria, in vitro as well as in vivo, by altering cell outer structures like membrane and exopolysaccharides.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 192 ◽  
Author(s):  
Feng Wang ◽  
Xinyu Ji ◽  
Qiupeng Li ◽  
Guanling Zhang ◽  
Jiani Peng ◽  
...  

New strategies against antibiotic-resistant bacterial pathogens are urgently needed but are not within reach. Here, we present in vitro and in vivo antimicrobial activity of TSPphg, a novel phage lysin identified from extremophilic Thermus phage TSP4 by sequencing its whole genome. By breaking down the bacterial cells, TSPphg is able to cause bacteria destruction and has shown bactericidal activity against both Gram-negative and Gram-positive pathogenic bacteria, especially antibiotic-resistant strains of Klebsiella pneumoniae, in which the complete elimination and highest reduction in bacterial counts by greater than 6 logs were observed upon 50 μg/mL TSPphg treatment at 37 °C for 1 h. A murine skin infection model further confirmed the in vivo efficacy of TSPphg in removing a highly dangerous and multidrug-resistant Staphylococcus aureus from skin damage and in accelerating wound closure. Together, our findings may offer a therapeutic alternative to help fight bacterial infections in the current age of mounting antibiotic resistance, and to shed light on bacteriophage-based strategies to develop novel anti-infectives.


1970 ◽  
Vol 8 (3) ◽  
pp. 11-12

Rifampicin (Rifadin-Lepetit; Rimactane-Ciba) is a semi-synthetic antibiotic derived from Streptomyces mediterranei which inhibits the synthesis of bacterial messenger-RNA. In vitro it is active against Gram-positive organisms and mycobacteria in low concentrations (0.0002 – 0.5 mcg/ml); and against Gram-negative organisms in higher concentrations (1 – 10 mcg/ml). Drug-resistant mutants readily emerge if rifampicin is used alone.1 It is already established as an important agent in the treatment of tuberculosis. Its usefulness in other bacterial and in viral infections is uncertain.


1941 ◽  
Vol 73 (5) ◽  
pp. 629-640 ◽  
Author(s):  
René J. Dubos ◽  
Rollin D. Hotchkiss

Several species of aerobic sporulating bacilli recently isolated from soil, sewage, manure, and cheese, as well as authentic strains obtained from type culture collections, have been found to exhibit antagonistic activity against unrelated microorganisms. Cultures of these aerobic sporulating bacilli yield an alcohol-soluble, water-insoluble fraction,—tyrothricin,—which is bactericidal for most Gram-positive and Gram-negative microbial species. Two different crystalline products have been separated from tyrothricin. One, which may be called tyrocidine, is bactericidal in vitro for both Gram-positive and Gram-negative species; the other substance, gramicidin, is effective only against Gram-positive microorganisms. In general, tyrocidine behaves like a protoplasmic poison and like other antiseptics, loses much of its activity in the presence of animal tissues. Gramicidin on the contrary exerts a much more subtle physiological effect on the susceptible bacterial cells and, when applied locally at the site of the infection, retains in vivo a striking activity against Gram-positive microorganisms.


Sign in / Sign up

Export Citation Format

Share Document