Coordination chemistry of thioether–pyridazine macrocycles II. Synthesis, structural and spectroscopic studies of dinuclear copper(II) and polynuclear copper(I) and silver(I) complexes of a tetrathiapyridazinophane macrocyclic ligand

1992 ◽  
Vol 70 (11) ◽  
pp. 2709-2716 ◽  
Author(s):  
Liqin Chen ◽  
Laurence K. Thompson ◽  
John N. Bridson

The preparation and properties of the thioether–pyridazine macrocycle (L3; C11H16N2S4) containing one pyridazine subunit, and its copper(II), copper(I), and silver(I) complexes are described. Magnetic susceptibility data (5–300 K) for the binuclear complexes [CuL3Cl2]2 (I) and [CuL3Br2]2 (II) have been fitted to the Friedberg magnetization expression with a molecular field correction. Intradimer antiferromagnetic exchange is weak (−2J < 18 cm−1), with even weaker interdimer exchange (−zJ′ < 0.3 cm−1). The complexes [CuL3Cl]x (III) and [AgL3ClO4]x (V) have been characterized by X-ray crystallography. III crystallizes in the triclinic system, space group [Formula: see text], with a = 9.410(2) Å, b = 10.291(2) Å, c = 9.208(2) Å, α = 108.56(1)°, β = 91.82(2)°, γ = 68.04(1)°, V = 780.1(2) Å3, and Z = 2(R = 0.035, Rw = 0.031 for 1856 reflections). The ligand acts as a bidentate, S2, bridge between dinuclear Cu2Cl2 units in a double stranded polymer. III crystallized in the monoclinic system, space group P21/n, with a = 9.382(4) Å, b = 19.274(4) Å, c = 10.190(3) Å, β = 106.35(3)°, V = 1768(1) Å3, and Z = 4 (R = 0.036, Rw = 0.029 for 1776 reflections). The structure consists of a polymeric, two dimensional sheet structure, involving pseudo-tetrahedral silver ions linked by exo-bidentate, S2, ligands and bidentate perchlorates.

1993 ◽  
Vol 71 (7) ◽  
pp. 1086-1093 ◽  
Author(s):  
Liqin Chen ◽  
Laurence K. Thompson ◽  
John N. Bridson

The preparation and properties of the thioether–pyridazine macrocycle (L4; C16H20S6N4) containing two pyridazine subunits, and its Cu(II), Cu(II)Cu(I), and Cu(I) complexes are described. The ligand is characterized by 1H nuclear magnetic resonance and mass spectrometry, and the complexes by infrared, eleetronic spectra, and magnetism, and in some cases by X-ray crystallography. The complex [Cu2(L4)Cl4]x, (1) crystallized in the triclinic system, space group [Formula: see text] with a = 8.6204(8) Å, b = 9.850(1) Å, c = 8.348(1) Å, α = 111.46(1)°, β = 102.50(1)°, γ = 71.818(9)°, V = 622.6(1) Å3, and Z = 1 (R = 0.043, Rw = 0.042 for 1312 reflections). Two monodentate pyridazine rings in the same ligand bind to one trans square-planar copper centre (CuN2Cl2) with two sulfurs from each ligand binding to another trans square-planar copper centre (CuS2Cl2) to form a polynuclear chain. The complex [Cu(L4)Cl2] (3) crystallized in the triclinic system, space group [Formula: see text] with a = 11.001(1) Å, b = 12.888(2) Å, c = 8.704(1) Å, α = 102.89(1)°, β = 103.36(1)°,γ = 75.84(1)°, V = 1145.8(3) Å3 and Z = 2 (R = 0.056, Rw = 0.044 for 2059 reflections). A trans square-planar structure (CuN2Cl2) exists for 3 with monodentate pyridazines. [Cu(L4)(NO3)2] (4) crystallized in the orthorhombic system, space group P212121, with a = 15.148(2) Å, b = 15.562(3) Å, c = 11.064(1) Å, V = 2608.2(7) Å3 and Z = 4 (R = 0.039, Rw = 0.034 for 1864 reflections). Two monodentate pyridazine rings and two bidentate nitrates bind to a pseudo-octahedral copper(II) centre.


1992 ◽  
Vol 70 (7) ◽  
pp. 1886-1896 ◽  
Author(s):  
Liqin Chen ◽  
Laurence K. Thompson ◽  
John N. Bridson

The preparations of thioether–pyridazine macrocycles containing three (L1) and two (L2) pyridazine subunits and their copper complexes are described. The ligands are characterized by 1H nuclear magnetic resonance and mass spectrometry and in one case by X-ray crystallography, and the complexes by infrared, electronic, and electron spin resonance (esr) spectra and in some cases by X-ray crystallography. The complex [Cu3(L1)2Cl6]•2CHCl3 (1) crystallized in the triclinic system, space group [Formula: see text] with a = 13.661(2) Å, b = 14.174(3) Å, c = 9.412(2) Å, α = 101.08(2)°, β = 96.94(2)°, γ = 75.76(2)°, V = 1728.2(6) Å3, and Z = 2 (R = 0.056, Rw = 0.048 for 2080 reflections). Two monodentate pyridazine rings in each ligand bind to one square-planar copper centre with the third monodentate pyridazine in each ligand linking the two to the central square-planar copper. The complex [Cu(L2)Cl2] (2) crystallized in the orthorhombic system, space group Pnma, with a = 8.571(1) Å, b = 16.104(3) Å, c = 13.961(2) Å, V = 1927(1) Å3, and Z = 4 (R = 0.037, Rw = 0.033 for 1070 reflections). A cis square-planar structure exists for 2 with monodentate pyridazines. [Cu(L2)2]•(ClO4)2•CH3CN•CHCl3 (5) crystallized in the triclinic system, space group [Formula: see text] with a = 12.888(4) Å, b = 17.462(6) Å, c = 10.906(1) Å, α = 96.07(2)°, β = 104.18(2)°, γ = 94.51(2)°, V = 2352(1) Å3, and Z = 2 (R = 0.053, Rw = 0.044 for 2941 reflections). Two ligands involving monodentate pyridazine rings bind to a square-planar copper(II) centre. The protonated ligand salt [L2H](ClO4)•H2O (6) crystallized in the monoclinic system, space group P21/n, with a = 14.762(4) Å, b = 8.637(5) Å, c = 16.267(4) Å, β = 92.78(2)°, V = 2072(1) Å3, and Z = 4 (R = 0.064, Rw = 0.053 for 1456 reflections). No sulfur coordination is observed in these complexes and there is no apparent spin exchange in the trinuclear derivative.


2006 ◽  
Vol 61 (2) ◽  
pp. 133-138 ◽  
Author(s):  
Murat Taş ◽  
Serkan Soylu ◽  
Hümeyra Batı

AbstractThe crystal structure of the newly synthesized complex, trans-aqua-bis(benzylamino)-bis(5,5-dimethylhydantoinato) copper(II) was determined by X-Ray single crystal data. The thermal analyses, FT-IR and magnetic susceptibility data are also presented. The complex crystallizes in the monoclinic system, space group C2. The complex features a distorted square pyramidal [CuN4O] coordination with 5,5-dimethylhydantoinato, benzylamine and water ligands. The 5,5-dimethylhydantoinato anion is bonded to the copper(II) ion via its deprotonated N atom in the 3-position.


1993 ◽  
Vol 71 (5) ◽  
pp. 726-737 ◽  
Author(s):  
Jianliang Xiao ◽  
Martin Cowie

Reaction of the tetracarbonyl species [M(CO)2(µ-mtz)]2 (M = Rh, Ir; mtz = 2-mercaptothiazolinate) with 1 equivalent of the diphosphines (Ph2P(CH2)nPPh2; n = 1 (dppm), 2 (dppe)) yields the compounds [M2(CO)2(µ-L)(µ-mtz)2] (M = Rh, L = dppm (1), dppe (3); M = Ir, L = dppm (2)), which readily undergo oxidative addition of iodine to give [M2I2(CO)2(µ-L)(µ-mtz)2] (M = Rh, L = dppm (4), dppe (6); M = Ir, L = dppm (5)). When 2 equivalents of dppm are used, the A-frame compounds [M2(CO)2(η1-mtz)(µ-mtz)(dppm)2] (M = Rh (7), Ir (8)) are afforded. In solution the dangling mtz group of 7 undergoes exchange with both the free mtz anion and the bridging mtz ligand. Compounds 7 and 8 are also produced by treatment of trans-[MCl(CO)(dppm)]2 (M = Rh, Ir) with 2 equivalents of the mtz anion. Reaction of these dppm-bridged dichloro species with 1 equivalent of the mtz anion yields [M2Cl(CO)2(µ-mtz)(dppm)2] (M = Rh (9a), Ir (10)). Compound 9a undergoes reversible Cl− dissociation to give [Rh2(CO)2(µ-mtz)(dppm)2][Cl] (9b), which is also the stable form in the solid. Reaction of 9 with CO gives the carbonyl-bridged species [Rh2(CO)2(µ-CO)(µ-mtz)(dppm)2][Cl]. The structures of 6 and 9b have been determined by X-ray crystallography. Compound 6 crystallizes in the triclinic space group [Formula: see text] with one-half equivalent of THF per asymmetric unit in a cell having a = 9.856(3) Å, b = 14.078(6) Å, c = 16.245(5) Å, α = 103.66(3)°, β = 93.21(3)°, γ = 92.91(3)°, V = 2182(1) Å3, and Z = 2, and has refined to R = 0.045 and Rw = 0.057 on the basis of 433 parameters varied. Compound 9b crystallizes with one equivalent of CH2Cl2 in the monoclinic space group P21/n with a = 11.400(1) Å, b = 21.944(2) Å, c = 22.134(1) Å, β = 92.494(7)°, V = 5532(1) Å3, and Z = 4, and has refined to R = 0.062 and Rw = 0.082 on the basis of 613 parameters varied.


1999 ◽  
Vol 52 (1) ◽  
pp. 1 ◽  
Author(s):  
Trevor W. Hambley ◽  
Shahara Afshar ◽  
Sebastian T. Marcus ◽  
Lawrence R. Gahan

The mixed donor 12-membered macrocyclic ligand 1-oxa-7-thia-4,10-diazacyclododecane ([12]aneN2OS) has been synthesized and the mercury(II) and lead(II) complexes, [Hg([12]aneN2OS)(NO3)2] and [Pb([12]aneN2OS)(NO3)2], have been isolated and characterized by X-ray crystallography. Crystals of the mercury complex are monoclinic, space group P 21/c, a 9·576(2), b 10·757(2), c 14·789(4) Å, β 93·58(2)°, whilst crystals of the lead complex are monoclinic, space group P 21/n, a 19·490(7), b 8·010(2), c 19·576(6) Å, β 109·90(2)°. The protonation constants and stability constants have been determined potentiometrically in aqueous solution. The protonation constants for [12]aneN2OS (log KHL 9·13; log K H2L 6·85) appear typical for secondary amines in similar trans-substituted 12-membered macrocycles. The magnitudes of the stability constants (HgII, log KHgL 10·5; PbII, log KPbL 6·6) are consistent with trends observed previously for macrocyclic ligands as secondary amine donors are replaced with oxygen and thioether donors.


1990 ◽  
Vol 45 (6) ◽  
pp. 731-740 ◽  
Author(s):  
Iris Dieter ◽  
Bernhard Lippert ◽  
Helmut Schöllhon ◽  
Ulf Thewalt

Protonated and heteronuclear adducts as well as a series of Pt(IV) oxidation products derived from trans-a2PtL2 (a = NH3, NH2CH3, L = 1-methyluracil anion, C5H5N2O2, or uridine anion, C10HnN2O6) have been prepared and studied by spectroscopic methods and in two cases by X-ray crystallography. trans-(NH3)2Pt(C5H5N2O2)2Ag2(NO3)2H2O · H2O (7) crystallizes in the orthorhombic space group Pna21 with cell dimensions a = 13.206(6), b = 7.238(9), c = 22.051(10) Å, U = 2107.7 Å3, Z = 4. 7 forms a polymeric structure with PtAg2 entities linked via O(4) sites of the 1-methyluracilato ligands. Pt is coordinated through N(3), the Ag centers have a mixed O(2),O(4) coordination, trans,trans,trans-[(NH3)2Pt(OH)2(C5H6N2O2)2](NO3)2 (9) contains two N(3)-bound neutral 1-methyluracil ligands, hence rare tautomers of this model nucleobase. 9 crystallizes in the monoclinic system, space group P21/n with cell dimensions a = 7.098(1), b = 10.395(1), c = 13.295(2) Å, U = 980.4 Å3, Z = 2. While the chemistry leading to Pt(IV) oxidation products from trans-a.2PtL2 is similar to that of the cis-isomer, protonation as well as heteronuclear complex formation of trans-a2PtL2 is more difficult to accomplish than with the cis-isomer. This difference appears to be primarily of steric origin.


1995 ◽  
Vol 50 (7) ◽  
pp. 1018-1024 ◽  
Author(s):  
Axel Michalides ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In a systematic search for supramolecular complexes involving all combinations of the cyclic polyethers 12-crown-4 (12C4), 15-crown-5 (15C 5), 18-crown-6 (18C 6) and dibenzo- 18-crown-6 (DB -18C6), and the geminal di- or trisulfones H2C(SO 2Me)2, H2C (SO2Et)2 and HC (SO2Me)3-n (SO2Et)n (n = 0 -3 ) , only the following four complexes could be isolated and unequivocally characterized by elemental analysis and 1H NMR spectroscopy: [(12C4){H2C (SO2Et)2}2] (3), [(18C6){H2C (S O2Me)2}] (4), [(DB -18C 6){H2C (SO2Et)2}] (5) and [(D B -18C 6)2{HC (SO2Me )(SO2Et)2}3] (6). The structure of 3 (triclinic, space group P1̄) consists of crystallographically centrosymmetric formula units, in which the disulfone molecules are bonded on each side of the ring by two C -H ··· O(crown) interactions originating from the central methylene group (H···O 213 pm) and from the methylene group of one EtSO2 moiety ( H ··· O 237 pm). Formula units related by translation are connected into parallel strands by a third type of reciprocal C -H ···O bond (H ···O 232 pm) between the second H atom of the central methylene group and a sulfonyl oxygen atom of the adjacent unit. The structure of 4 (monoclinic, space group C2/c) showed severe disorder of the crown ether and could not be refined satisfactorily. Compounds 5 and 6 crystallized as long and extremely thin fibres, indicative of linear-polymeric supramolecular structures; single crystals for X-ray crystallography were not available.


2020 ◽  
Vol 21 (3) ◽  
pp. 781
Author(s):  
Isabel Iglesias ◽  
José A. Huidobro ◽  
Belén F. Alfonso ◽  
Camino Trobajo ◽  
Aránzazu Espina ◽  
...  

The hydrothermal synthesis and both the chemical and structural characterization of a diamin iron phosphate are reported. A new synthetic route, by using n-butylammonium dihydrogen phosphate as a precursor, leads to the largest crystals described thus far for this compound. Its crystal structure is determined from single-crystal X-ray diffraction data. It crystallizes in the orthorhombic system (Pnma space group, a = 10.1116(2) Å, b = 6.3652(1) Å, c = 7.5691(1) Å, Z = 4) at room temperature and, below 220 K, changes towards the monoclinic system P21/n, space group. The in situ powder X-ray thermo-diffraction monitoring for the compound, between room temperature and 1100 K, is also included. Thermal analysis shows that the solid is stable up to ca. 440 K. The kinetic analysis of thermal decomposition (hydrogenated and deuterated forms) is performed by using the isoconversional methods of Vyazovkin and a modified version of Friedman. Similar values for the kinetic parameters are achieved by both methods and they are checked by comparing experimental and calculated conversion curves.


2006 ◽  
Vol 61 (6) ◽  
pp. 699-707 ◽  
Author(s):  
Daniela John ◽  
Alexander Rohde ◽  
Werner Urland

The gadolinium(III) trifluoroacetates ((CH3)2NH2)[Gd(CF3COO)4] (1), ((CH3)3NH)[Gd(CF3 COO)4(H2O)] (2), Gd(CF3COO)3(H2O)3 (3) as well as Gd2(CF3COO)6(H2O)2(phen)3 · C2H5OH (4) (phen = 1,10-phenanthroline) were synthesized and structurally characterized by X-ray crystallography. These compounds crystallize in the space group P1̅ (No. 2, Z = 2) (1, 2 and 4) and P 21/c (No. 14, Z = 4) (3), respectively, with the following lattice constants 1: a = 884.9(2), b = 1024.9(2), c = 1173.1(2) pm, α = 105.77(2), β = 99.51(2), γ = 107.93(2)°; 2: a = 965.1(1), b = 1028.6(1), c = 1271.3(2) pm, α = 111.83(2), β = 111.33(2), γ = 90.44(2)°; 3: a = 919.6(2), b = 1890.6(4), c = 978.7(2) pm, β = 113.94(2)°; 4: a = 1286.7(8), b = 1639.3(8), c = 1712.2(9) pm, α = 62.57(6), β = 84.13(5), γ = 68.28(5)°. The compounds consist of Gd3+ ions which are bridged by carboxylate groups either to chains (1 and 2) or to dimers (3 and 4). In addition to the Gd3+ dimers, compound (4) also contains monomeric Gd3+ units. The magnetic behaviour of 2 and 3 was investigated in a temperature range of 1.77 to 300 K. The magnetic data for these compounds indicate weak antiferromagnetic interactions


Sign in / Sign up

Export Citation Format

Share Document