Protection of epithelial cells from Salmonella enterica serovar Enteritidis invasion by antibodies against the SPI-1 type III secretion system

2010 ◽  
Vol 56 (6) ◽  
pp. 522-526 ◽  
Author(s):  
Taseen S. Desin ◽  
Claudia S. Mickael ◽  
Po-King S. Lam ◽  
Andrew A. Potter ◽  
Wolfgang Köster

Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) is one of the major causes of bacterial food-borne illness in humans. During the course of infection, Salmonella Enteritidis uses 2 type III secretion systems (T3SS), one of which is encoded on Salmonella pathogenicity island 1 (SPI-1). SPI-1 plays a major role in the invasion process. In the present study, we evaluated the effect of sera against the SPI-1 T3SS components on invasion in vitro using polarized human intestinal epithelial cells (Caco-2). Antisera to SipD protected Caco-2 cells against entry of wild-type Salmonella Enteritidis. On the other hand, sera against InvG, PrgI, SipA, SipC, SopB, SopE, and SopE2 did not affect Salmonella Enteritidis entry. To illustrate the specificity of anti-SipD mediated inhibition, SipD-specific antibodies were depleted from the serum. Antiserum depleted of SipD-specific antibodies lost its capacity to inhibit Salmonella Enteritidis entry. Thus, we demonstrate for the first time that antibodies against the SPI-1 needle tip protein (SipD) inhibit Salmonella Enteritidis invasion and that the SipD protein may be an important target in blocking SPI-1 mediated virulence of Salmonella Enteritidis.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Kuan-Yeh Huang ◽  
Yi-Hsin Wang ◽  
Kun-Yi Chien ◽  
Rajendra Prasad Janapatla ◽  
Cheng-Hsun Chiu

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Binjie Chen ◽  
Xianchen Meng ◽  
Jie Ni ◽  
Mengping He ◽  
Yanfei Chen ◽  
...  

AbstractSmall non-coding RNA RyhB is a key regulator of iron homeostasis in bacteria by sensing iron availability in the environment. Although RyhB is known to influence bacterial virulence by interacting with iron metabolism related regulators, its interaction with virulence genes, especially the Type III secretion system (T3SS), has not been reported. Here, we demonstrate that two RyhB paralogs of Salmonella enterica serovar Enteritidis upregulate Type III secretion system (T3SS) effectors, and consequently affect Salmonella invasion into intestinal epithelial cells. Specifically, we found that RyhB-1 modulate Salmonella response to stress condition of iron deficiency and hypoxia, and stress in simulated intestinal environment (SIE). Under SIE culture conditions, both RyhB-1 and RyhB-2 are drastically induced and directly upregulate the expression of T3SS effector gene sipA by interacting with its 5′ untranslated region (5′ UTR) via an incomplete base-pairing mechanism. In addition, the RyhB paralogs upregulate the expression of T3SS effector gene sopE. By regulating the invasion-related genes, RyhBs in turn affect the ability of S. Enteritidis to adhere to and invade into intestinal epithelial cells. Our findings provide evidence that RyhBs function as critical virulence factors by directly regulating virulence-related gene expression. Thus, inhibition of RyhBs may be a potential strategy to attenuate Salmonella.


mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
A. Marijke Keestra ◽  
Maria G. Winter ◽  
Daisy Klein-Douwel ◽  
Mariana N. Xavier ◽  
Sebastian E. Winter ◽  
...  

ABSTRACTThe invasion-associated type III secretion system (T3SS-1) ofSalmonella entericaserotype Typhimurium (S. Typhimurium) activates the transcription factor NF-κB in tissue culture cells and induces inflammatory responses in animal models through unknown mechanisms. Here we show that bacterial delivery or ectopic expression of SipA, a T3SS-1-translocated protein, led to the activation of the NOD1/NOD2 signaling pathway and consequent RIP2-mediated induction of NF-κB-dependent inflammatory responses. SipA-mediated activation of NOD1/NOD2 signaling was independent of bacterial invasionin vitrobut required an intact T3SS-1. In the mouse colitis model, SipA triggered mucosal inflammation in wild-type mice but not in NOD1/NOD2-deficient mice. These findings implicate SipA-driven activation of the NOD1/NOD2 signaling pathway as a mechanism by which the T3SS-1 induces inflammatory responsesin vitroandin vivo.IMPORTANCESalmonella entericaserotype Typhimurium (S. Typhimurium) deploys a type III secretion system (T3SS-1) to induce intestinal inflammation and benefits from the ensuing host response, which enhances growth of the pathogen in the intestinal lumen. However, the mechanisms by which the T3SS-1 triggers inflammatory responses have not been resolved. Here we show that the T3SS-1 effector protein SipA induces NF-κB activation and intestinal inflammation by activating the NOD1/NOD2 signaling pathway. These data suggest that the T3SS-1 escalates innate responses through a SipA-mediated activation of pattern recognition receptors in the host cell cytosol.


Microbiology ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Ciara M. Shaver ◽  
Alan R. Hauser

The effector proteins of the type III secretion systems of many bacterial pathogens act in a coordinated manner to subvert host cells and facilitate the development and progression of disease. It is unclear whether interactions between the type-III-secreted proteins of Pseudomonas aeruginosa result in similar effects on the disease process. We have previously characterized the contributions to pathogenesis of the type-III-secreted proteins ExoS, ExoT and ExoU when secreted individually. In this study, we extend our prior work to determine whether these proteins have greater than expected effects on virulence when secreted in combination. In vitro cytotoxicity and anti-internalization activities were not enhanced when effector proteins were secreted in combinations rather than alone. Likewise in a mouse model of pneumonia, bacterial burden in the lungs, dissemination and mortality attributable to ExoS, ExoT and ExoU were not synergistically increased when combinations of these effector proteins were secreted. Because of the absence of an appreciable synergistic increase in virulence when multiple effector proteins were secreted in combination, we conclude that any cooperation between ExoS, ExoT and ExoU does not translate into a synergistically significant enhancement of disease severity as measured by these assays.


2009 ◽  
Vol 77 (7) ◽  
pp. 2866-2875 ◽  
Author(s):  
Taseen S. Desin ◽  
Po-King S. Lam ◽  
Birgit Koch ◽  
Claudia Mickael ◽  
Emil Berberov ◽  
...  

ABSTRACT Salmonella enterica subsp. enterica serovar Enteritidis is a leading cause of human food-borne illness that is mainly associated with the consumption of contaminated poultry meat and eggs. To cause infection, S. Enteritidis is known to use two type III secretion systems, which are encoded on two salmonella pathogenicity islands, SPI-1 and SPI-2, the first of which is thought to play a major role in invasion and bacterial uptake. In order to study the role of SPI-1 in the colonization of chicken, we constructed deletion mutants affecting the complete SPI-1 region (40 kb) and the invG gene. Both ΔSPI-1 and ΔinvG mutant strains were impaired in the secretion of SipD, a SPI-1 effector protein. In vitro analysis using polarized human intestinal epithelial cells (Caco-2) revealed that both mutant strains were less invasive than the wild-type strain. A similar observation was made when chicken cecal and small intestinal explants were coinfected with the wild-type and ΔSPI-1 mutant strains. Oral challenge of 1-week-old chicken with the wild-type or ΔSPI-1 strains demonstrated that there was no difference in chicken cecal colonization. However, systemic infection of the liver and spleen was delayed in birds that were challenged with the ΔSPI-1 strain. These data demonstrate that SPI-1 facilitates systemic infection but is not essential for invasion and systemic spread of the organism in chickens.


2012 ◽  
Vol 2012 ◽  
pp. 1-36 ◽  
Author(s):  
Francisco Ramos-Morales

Type III secretion systems are molecular machines used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, directly into eukaryotic host cells. These proteins manipulate host signal transduction pathways and cellular processes to the pathogen’s advantage. Salmonella enterica possesses two virulence-related type III secretion systems that deliver more than forty effectors. This paper reviews our current knowledge about the functions, biochemical activities, host targets, and impact on host cells of these effectors. First, the concerted action of effectors at the cellular level in relevant aspects of the interaction between Salmonella and its hosts is analyzed. Then, particular issues that will drive research in the field in the near future are discussed. Finally, detailed information about each individual effector is provided.


2009 ◽  
Vol 77 (12) ◽  
pp. 5458-5470 ◽  
Author(s):  
Stefanie U. Hölzer ◽  
Markus C. Schlumberger ◽  
Daniela Jäckel ◽  
Michael Hensel

ABSTRACT The virulence of Salmonella enterica critically depends on the functions of two type III secretion systems (T3SS), with the Salmonella pathogenicity island 1 (SPI1)-encoded T3SS required for host cell invasion and the SPI2-T3SS enabling Salmonella to proliferate within host cells. A further T3SS is required for the assembly of the flagella. Most serovars of Salmonella also possess a lipopolysaccharide with a complex O-antigen (OAg) structure. The number of OAg units attached to the core polysaccharide varies between 16 and more than 100 repeats, with a trimodal distribution. This work investigated the correlation of the OAg length with the functions of the SPI1-T3SS and the SPI2-T3SS. We observed that the number of repeats of OAg units had no effect on bacterial motility. The interaction of Salmonella with epithelial cells was altered if the OAg structure was changed by mutations in regulators of OAg. Strains defective in synthesis of very long or long and very long OAg species showed increased translocation of a SPI1-T3SS effector protein and increased invasion. Invasion of a strain entirely lacking OAg was increased, but this mutant strain also showed increased adhesion. In contrast, translocation of a SPI2-T3SS effector protein and intracellular replication were not affected by modification of the OAg length. Mutant strains lacking the entire OAg or long and very long OAg were highly susceptible to complement killing. These observations indicate that the architecture of the outer membrane of Salmonella is balanced to permit sufficient T3SS function but also to confer optimal protection against antimicrobial defense mechanisms.


2016 ◽  
Vol 199 (4) ◽  
Author(s):  
Rebecca Johnson ◽  
Alexander Byrne ◽  
Cedric N. Berger ◽  
Elizabeth Klemm ◽  
Valerie F. Crepin ◽  
...  

ABSTRACT Strains of the various Salmonella enterica serovars cause gastroenteritis or typhoid fever in humans, with virulence depending on the action of two type III secretion systems (Salmonella pathogenicity island 1 [SPI-1] and SPI-2). SptP is a Salmonella SPI-1 effector, involved in mediating recovery of the host cytoskeleton postinfection. SptP requires a chaperone, SicP, for stability and secretion. SptP has 94% identity between S. enterica serovar Typhimurium and S. Typhi; direct comparison of the protein sequences revealed that S. Typhi SptP has numerous amino acid changes within its chaperone-binding domain. Subsequent comparison of ΔsptP S. Typhi and S. Typhimurium strains demonstrated that, unlike SptP in S. Typhimurium, SptP in S. Typhi was not involved in invasion or cytoskeletal recovery postinfection. Investigation of whether the observed amino acid changes within SptP of S. Typhi affected its function revealed that S. Typhi SptP was unable to complement S. Typhimurium ΔsptP due to an absence of secretion. We further demonstrated that while S. Typhimurium SptP is stable intracellularly within S. Typhi, S. Typhi SptP is unstable, although stability could be recovered following replacement of the chaperone-binding domain with that of S. Typhimurium. Direct assessment of the strength of the interaction between SptP and SicP of both serovars via bacterial two-hybrid analysis demonstrated that S. Typhi SptP has a significantly weaker interaction with SicP than the equivalent proteins in S. Typhimurium. Taken together, our results suggest that changes within the chaperone-binding domain of SptP in S. Typhi hinder binding to its chaperone, resulting in instability, preventing translocation, and therefore restricting the intracellular activity of this effector. IMPORTANCE Studies investigating Salmonella pathogenesis typically rely on Salmonella Typhimurium, even though Salmonella Typhi causes the more severe disease in humans. As such, an understanding of S. Typhi pathogenesis is lacking. Differences within the type III secretion system effector SptP between typhoidal and nontyphoidal serovars led us to characterize this effector within S. Typhi. Our results suggest that SptP is not translocated from typhoidal serovars, even though the loss of sptP results in virulence defects in S. Typhimurium. Although SptP is just one effector, our results exemplify that the behavior of these serovars is significantly different and genes identified to be important for S. Typhimurium virulence may not translate to S. Typhi.


2018 ◽  
Vol 86 (3) ◽  
Author(s):  
Francisco J. Martinez-Becerra ◽  
Prashant Kumar ◽  
Vikalp Vishwakarma ◽  
Jae Hyun Kim ◽  
Olivia Arizmendi ◽  
...  

ABSTRACT Nontyphoidal Salmonella enterica serotypes (NTS) are the leading cause of hospitalization and death due to foodborne illnesses. NTS are the costliest of the foodborne pathogens and cause ∼$4 billion annually in health care costs. In Africa, new invasive NTS are the leading cause of bacteremia, especially in HIV-positive children and adults. Current vaccines against S. enterica are not broadly protective and most are directed at the typhoid-causing serotypes, not the NTS. All S. enterica strains require two type III secretion systems (T3SS) for virulence. The T3SS needle tip protein and the first translocator are localized to the T3SS needle tip and are required for pathogenesis of S. enterica . Collectively they are 95 to 98% conserved at the amino acid sequence level among all S. enterica strains. The Salmonella pathogenicity island 1 or 2 tip and first translocator proteins were genetically fused to produce the S1 and S2 fusion proteins, respectively, as potential vaccine candidates. S1 and S2 were then characterized using spectroscopic techniques to understand their structural and biophysical properties. Formulated at the proper pH, S1, S2, or S1 plus S2 (S1S2), admixed with adjuvant, was used to immunize mice followed by a lethal challenge with S. enterica serotype Typhimurium or S. enterica serotype Enteritidis. The S1S2 formulation provided the highest protective efficacy, thus demonstrating that an S1S2 subunit vaccine can provide broad, serotype-independent protection, possibly against all S. enterica serotypes. Such a finding would be transformative in improving human health.


1998 ◽  
Vol 180 (18) ◽  
pp. 4775-4780 ◽  
Author(s):  
Jörg Deiwick ◽  
Thomas Nikolaus ◽  
Jaqueline E. Shea ◽  
Colin Gleeson ◽  
David W. Holden ◽  
...  

ABSTRACT The Salmonella typhimurium genome contains two pathogenicity islands (SPI) with genes encoding type III secretion systems for virulence proteins. SPI1 is required for the penetration of the epithelial layer of the intestine. SPI2 is important for the subsequent proliferation of bacteria in the spleens of infected hosts. Although most mutations in SPI2 lead to a strong reduction of virulence, they have different effects in vitro, with some mutants having significantly increased sensitivity to gentamicin and the antibacterial peptide polymyxin B. Previously we showed that certain mutations in SPI2 affect the ability of S. typhimurium to secrete SPI1 effector proteins and to invade cultured eukaryotic cells. In this study, we show that these SPI2 mutations affect the expression of the SPI1 invasion genes. Analysis of reporter fusions to various SPI1 genes reveals highly reduced expression of sipC,prgK, and hilA, the transcriptional activator of SPI1 genes. These observations indicate that the expression of one type III secretion system can be influenced dramatically by mutations in genes encoding a second type III secretion system in the same cell.


Sign in / Sign up

Export Citation Format

Share Document