Transcriptional regulation of ompF2, an ompF paralogue, in Yersinia pestis

2011 ◽  
Vol 57 (6) ◽  
pp. 468-475 ◽  
Author(s):  
He Gao ◽  
Yiquan Zhang ◽  
Yafang Tan ◽  
Li Wang ◽  
Xiao Xiao ◽  
...  

A regulatory circuit composed of three porins (OmpF, OmpC, and OmpX) and two transcriptional regulators (OmpR and CRP) has previously been characterized in Yersinia pestis . In this follow-up study, OmpF2, an OmpF paralogue, was integrated into this regulatory circuit. Only basal expression was detected for ompF2 in the wild-type strain under different osmotic conditions. The ompF2 transcription was dramatically enhanced with increasing medium osmolarity in the ompR null mutant background. The CRP regulator had no regulatory effect on ompF2 under the growth conditions tested.

1999 ◽  
Vol 181 (13) ◽  
pp. 4129-4132 ◽  
Author(s):  
Rob J. M. Van Spanning ◽  
Edith Houben ◽  
Willem N. M. Reijnders ◽  
Stephen Spiro ◽  
Hans V. Westerhoff ◽  
...  

ABSTRACT By using the ′lacZ gene, the activities of thenirI, nirS, and norC promoters were assayed in the wild type and in NNR-deficient mutants ofParacoccus denitrificans grown under various growth conditions. In addition, induction profiles of the three promoters in response to the presence of various nitrogenous oxides were determined. Transcription from the three promoters required the absence of oxygen and the presence both of the transcriptional activator NNR and of nitric oxide. The activity of the nnr promoter itself was halved after the cells had been switched from aerobic respiration to denitrification. This response was apparently not a result of autoregulation or of regulation by FnrP, since the nnrpromoter was as active in the wild-type strain as it was in NNR- or FnrP-deficient mutants.


1978 ◽  
Vol 56 (1) ◽  
pp. 51-59 ◽  
Author(s):  
J. B. Bell ◽  
K. Bruce Jacobson ◽  
Lee R. Shugart

By use of reverse phase 5 chromatography, a strain of Saccharomyces cerevisiae (XB109-5B) has been shown to exhibit multiple isoaccepting forms for several of the transfer ribonucleic acids (tRNAs). This is in contrast with a standard wild-type strain where only one acceptor is found for each tRNA studied. Multiple peaks for tRNATyr, tRNAPhe, tRNASer, and tRNAVal have been detected for strain XB109-5B. However, the observation of multiple isoacceptors cannot be extended to all tRNAs in this strain since tRNAAsp appears as a single form that is the same as in the wild type. The appearance of multiple peaks was found to depend on the growth conditions of the cells. The tRNA profiles of XB109-5B that was grown rapidly with vigorous aeration differed the most from profiles of comparably grown wild-type yeast, whereas tRNA from this mutant, grown without shaking or supplementary aeration, appeared the same as the wild type. The minor nucleoside composition of the isoacceptors of tRNAPhe was obtained.


1998 ◽  
Vol 180 (8) ◽  
pp. 2228-2231 ◽  
Author(s):  
Nigel J. Mouncey ◽  
Samuel Kaplan

ABSTRACT The ccoNOQP gene cluster of Rhodobacter sphaeroides 2.4.1T encodes acbb 3 cytochrome oxidase which is utilized in oxygen-limited conditions for aerobic respiration. The β-galactosidase activity of accoN::lacZ transcriptional fusion was low under high (30%)-oxygen and anaerobic growth conditions. Maximal ccoN::lacZexpression was observed when the oxygen concentration was lowered to 2%. In an FnrL mutant,ccoN::lacZ expression was significantly lower than in the wild-type strain, suggesting that FnrL is a positive regulator of genes encoding thecbb 3 oxidase.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Microbiology ◽  
2003 ◽  
Vol 149 (10) ◽  
pp. 2901-2908 ◽  
Author(s):  
Youko Sakayori ◽  
Mizuho Muramatsu ◽  
Satoshi Hanada ◽  
Yoichi Kamagata ◽  
Shinichi Kawamoto ◽  
...  

The emergence and spread of mutants resistant to bacteriocins would threaten the safety of using bacteriocins as food preservatives. To determine the physiological characteristics of resistant mutants, mutants of Enterococcus faecium resistant to mundticin KS, a class IIa bacteriocin, were isolated. Two types of mutant were found that had different sensitivities to other antimicrobial agents such as nisin (class I) and kanamycin. Both mutants were resistant to mundticin KS even in the absence of Mg2+ ions. The composition of unsaturated fatty acids in the resistant mutants was significantly increased in the presence of mundticin KS. The composition of the phospholipids in the two resistant mutants also differed from those in the wild-type strain. The putative zwitterionic amino-containing phospholipid in both mutants significantly increased, whereas amounts of phosphatidylglycerol and cardiolipin decreased. These changes in membrane structure may influence resistance of enterococci to class IIa and class I bacteriocins.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Eduard Melief ◽  
Shilah A. Bonnett ◽  
Edison S. Zuniga ◽  
Tanya Parish

ABSTRACT The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


1972 ◽  
Vol 18 (6) ◽  
pp. 909-915 ◽  
Author(s):  
A. P. Singh ◽  
K.-J. Cheng ◽  
J. W. Costerton ◽  
E. S. Idziak ◽  
J. M. Ingram

The site of the cell barrier to actinomycin-D uptake was studied using a wild-type Escherichia coli strain P and its cell envelope-defective filamentous mutants, strains 6γ and 12γ, both of which 'leak' β-galactosidase and alkaline phosphatase into the medium during growth indicating both membrane and cell-wall defects. Actinomycin-D entered the cells of these two mutant strains as evidenced by the inhibition of both 14C-uracil incorporation and synthesis of the induced β-galactosidase system. Under similar conditions, no inhibition occurred in the wild-type strain and its sucrose-lysozyme prepared spheroplasts. Actinomycin-D did, however, inhibit the above-mentioned systems in the wild-type sucrose-lysozyme spheroplasts prepared in the presence of 2 mM EDTA. The experimental data indicate that although the cell wall may act as a primary barrier or sieve to actinomycin-D, the cytoplasmic membrane should be considered the final and determinative barrier to this antibiotic.


2009 ◽  
Vol 191 (13) ◽  
pp. 4259-4267 ◽  
Author(s):  
Ann-Catrin Björnfot ◽  
Moa Lavander ◽  
Åke Forsberg ◽  
Hans Wolf-Watz

ABSTRACT YscU of Yersinia can be autoproteolysed to generate a 10-kDa C-terminal polypeptide designated YscUCC. Autoproteolysis occurs at the conserved N↓PTH motif of YscU. The specific in-cis-generated point mutants N263A and P264A were found to be defective in proteolysis. Both mutants expressed and secreted Yop proteins (Yops) in calcium-containing medium (+Ca2+ conditions) and calcium-depleted medium (−Ca2+ conditions). The level of Yop and LcrV secretion by the N263A mutant was about 20% that of the wild-type strain, but there was no significant difference in the ratio of the different secreted Yops, including LcrV. The N263A mutant secreted LcrQ regardless of the calcium concentration in the medium, corroborating the observation that Yops were expressed and secreted in Ca2+-containing medium by the mutant. YscF, the type III secretion system (T3SS) needle protein, was secreted at elevated levels by the mutant compared to the wild type when bacteria were grown under +Ca2+ conditions. YscF secretion was induced in the mutant, as well as in the wild type, when the bacteria were incubated under −Ca2+ conditions, although the mutant secreted smaller amounts of YscF. The N263A mutant was cytotoxic for HeLa cells, demonstrating that the T3SS-mediated delivery of effectors was functional. We suggest that YscU blocks Yop release and that autoproteolysis is required to relieve this block.


Sign in / Sign up

Export Citation Format

Share Document