Effects of phosphorus fertilization and liming on growth, mineral nutrition, and gas exchange of Alnus rubra seedlings grown in soils from mature alluvial Alnus stands

2003 ◽  
Vol 33 (11) ◽  
pp. 2089-2096 ◽  
Author(s):  
K R Brown ◽  
P J Courtin

In southern coastal British Columbia, red alder (Alnus rubra Bong.) is recommended for reforestation on some low-elevation, fertile, and moist sites (e.g., alluvial sites). Correlative data indicate that P deficiencies limit the growth of alder in low-pH soils; deficiencies of P and other elements may also develop in the presence of an alder stand. Because alder may be grown in repeated rotations on alluvial sites, we sought to determine whether elemental deficiencies were likely in soils from mature stands. We examined the effects of P additions (as triple super phosphate) and liming (as dolomitic limestone) on potted red alder seedlings grown in soils from mature alluvial alder stands. Four soils were "low-pH" (mean = 4.5) and two were "high-pH" (mean = 5.5); all were classified as very rich. Growth of unfertilized seedlings was greatest in the soil with the highest soil Bray-P levels. Growth rates increased with P supply, but the response decreased with increasing Bray-P and was less in the high-pH soils. Liming increased soil pH and uptake of Mg, but did not increase growth. Phosphorus additions increased growth mainly by increasing P uptake, leaf size, and biomass allocation to branches. Photosynthetic rates were highest in the intermediate P treatment, but instantaneous water use efficiency increased with P rate. Phosphorus deficiencies may limit the growth of alder seedlings in alluvial soils previously containing mature alder stands.

2010 ◽  
Vol 90 (3) ◽  
pp. 265-277 ◽  
Author(s):  
R E Karamanos ◽  
N A Flore ◽  
J T Harapiak

Penicillium bilaii is a fungus that lives in association with plant roots and has been shown to increase phosphorus (P) solubility and uptake by some crops. A series of 47 experiments with hard red spring wheat (Triticum aestivum L.) that were carried out in the three prairie provinces between 1989 and 1995 and included treatment with P. bilaii as a main plot (with or without) and four rates of fertilizer P (0, 4.4, 8.7 and 13.1 kg P ha-1) as subplots were statistically analyzed to ascertain whether use of P. bilaii resulted in increases in both yield and P uptake by wheat. Of the 47 experiments, response to fertilizer P was obtained in 33 experiments and to P. bilaii in 14, in five of which the response was positive and nine resulted in yield decreases. These responses could not be attributed either to extractable P soil concentration, soil organic matter (SOM) or texture, or weather conditions and are considered random events. Overall, P uptake was a function of fertilizer P rate only.Key words: Seed-treatment, seed yield, P uptake, P use efficiency


2018 ◽  
Vol 9 (4) ◽  
pp. 728-735 ◽  
Author(s):  
Georgia S. Theologidou ◽  
Demetrios Baxevanos ◽  
Ioannis T. Tsialtas

Abstract Climate change affects the Mediterranean region stressing lentil crops during flowering and seed set. Early maturation and drought tolerance are desirable traits in these conditions. Phosphorus (P) is considered to enhance early flowering, maturity and thus yields. Four P rates (0, 30, 60, 90 kg P2O5 ha−1) were applied on four cultivars (Samos, Thessaly, Flip, Ikaria) during two seasons. Growing degree-days (GDD) were calculated for vegetative (V4–5, V7–8) and reproductive stages (R1, R2, R4, R6, R8). At R2 (full bloom) carbon isotope discrimination (Δ) was used to assess water-use efficiency. At R8 (full maturity), the seed weight (SW) was determined by harvest. Cultivars, P and the P × cultivar and P × growth season interactions affected the earliness in reproductive stages; P had no effect on GDD of vegetative stages. Phosphorus both induced earliness (Flip, Thessaly) and delayed maturity (Samos, Ikaria). GDD and SW were negatively correlated for the P × cultivar interaction at R1 (first bloom), R2, R4 (flat pod) and R6 (full pod filling) stages; being the strongest at R1. Negative correlations were evident for the P × growth season interaction at R2, R4 and R6 stages; being the strongest at R4. Cultivars and P did not affect Δ. A proper combination of cultivar and P rate can mitigate lentil yield losses under changing Mediterranean climate.


HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 426-430 ◽  
Author(s):  
Ricardo González-Ponce ◽  
Esther G. López-de-Sá ◽  
César Plaza

Struvite (MgNH4PO4·6H2O) production is widely studied as a way to remove phosphorus (P) from wastewater and generate a potentially marketable P fertilizer, but its effects on crops have yet to be researched more thoroughly. This study was conducted to evaluate struvite recovered by the Spanish Research Council (CSIC) pilot process (STR) as a source of P for lettuce (Lactuca sativa L.) by comparing its effectiveness with that of single superphosphate (SUP), a common P fertilizer derived from phosphate rock. In a greenhouse pot experiment, a P-deficient loamy sand soil was amended with either SUP or STR at P rates of 0, 4, 8, 12, 16, and 20 mg·kg−1. Nitrogen and potassium were uniformly supplied to all treatments. The response of lettuce head fresh weight and P uptake to P rate exhibited statistically significant quadratic relationships for both SUP and STR. With respect to SUP, STR was significantly more effective in increasing lettuce yield and P uptake, probably because of the larger amount of magnesium (Mg) incorporated with this material and a synergistic effect on P uptake. This work supports previous findings based on other test crops in suggesting that STR can be a P source attractive to the fertilizer market with additional agronomic and environmental benefits such as providing available Mg and nitrogen, helping attenuate consumption of phosphate rock, and reducing release of P by discharge of treated wastewaters to surface and groundwater systems.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1728-1731 ◽  
Author(s):  
Donglin Zhang ◽  
Renae E. Moran ◽  
Lois B. Stack

Scaevola aemula R.Br. (fanflower), an ornamental plant native to Australia, produces stunted growth when fertilized with high concentrations of P. To determine optimum P concentration, rooted cuttings were transplanted into 15 cm standard pots and grown with a water soluble fertilizer, where P concentrations were 0, 14.5, 29.0, 43.5, 58.0, 72.5, 87.0 mg·L-1 and all plants received 200 mg·L-1 N and 166 mg·L-1 K. Shoot growth and flowering data were taken every 21 days until the experiment was terminated after 84 days. Shoot length, number and dry weight, and leaf size were reduced significantly at P concentrations higher than 14.5 mg·L-1 with severe reduction at P levels higher than 43.5 mg·L-1. Number of flowers per plant was not affected by P concentrations in the range of 0 to 43.5 mg·L-1, but decreased significantly at P levels higher than 43.5 mg·L-1. Medium pH decreased with increase in P rate due to the acidic nature of the P fertilizer. When P was applied in every irrigation, the optimum concentration was 14.5 mg·L-1 or less. P greater than 43.5 mg·L-1 was detrimental to vegetative growth and flowering, possibly due to above optimum P or to medium acidification.


2020 ◽  
Vol 12 (1) ◽  
pp. 22-44
Author(s):  
Adeniyi Adebowale Soretire ◽  
Nurudeen Olatunbosun Adeyemi ◽  
Muftau Olaoye Atayese ◽  
Olalekan Suleiman Sakariyawo ◽  
Ademola Adewunmi

AbstractArbuscular mycorrhizal fungi (AMF) can be used to promote the productivity of legumes on phosphorus- (P) deficient soils. The present study investigates the inoculation effects of three AMF species (Funneliformis mosseae, Rhizophagus intraradices, and Claroideoglomus etunicatum) and the control (uninoculated) on nitrogen fixation efficiency and growth performance of tropical soybean cultivar (TGx1448-2E) under varying P fertilizer rates (0, 20, and 40 kg P2O5 ha−1) in a derived savannah of Nigeria. The results showed that shoot and root dry matter, number of nodules, relative ureide abundance (RUA), nitrogen derived from atmosphere (Ndfa), total N fixed, shoot P uptake, grain, and biomass yield significantly increased with AMF inoculation, with better performance observed in plants inoculated with Rhizophagus intraradices and Funneliformis mosseae compared to Claroideoglomus etunicatum. Similarly, the soybean growth variables, P uptake, and nitrogen fixation activities increased with increasing P application rates. Conversely, AMF root colonization significantly reduced with increasing P rate. Interaction of AMF inoculation and P rates significantly influenced soybean growth and nitrogen fixation. R. intraradices inoculation with 20 kg P2O5 ha−1 resulted in the highest amount of RUA, Ndfa, N fixed, and grain yield. It could be concluded from this study that R. intraradices with moderate P rate could be used to enhance nodulation, nitrogen fixation, and soybean yield in P-deficient soils.


Author(s):  
Jéssyca Dellinhares Lopes Martins ◽  
Rogério Peres Soratto ◽  
Adalton Mazetti Fernandes

Abstract: The objective of this work was to evaluate the effect of humic substances (HS) and phosphorus fertilizer on the growth, P uptake, tuber yield, fertilizer P recovery (FPR), and applied P-use efficiency (APUE) of potato (Solanum tuberosum) cultivated in a sandy and in a clayey soils. In both soils, the experiment was carried out in a randomized complete block design, in a 4×3 factorial arrangement, with four replicates. The treatments consisted of four P rates (0, 100, 200, and 400 kg ha-1 P2O5) and of three HS rates (0, 50, and 300 L ha-1). Phosphate fertilization increased the P uptake and tuber yield of potato in both soils. Soil characteristics conditioned the effect of the addition of HS. In the sandy soil, with a lower content of organic matter (OM) than the clayey soil, the addition of HS increases the P uptake and FPR, besides providing a greater tuber yield and APUE, especially under the P absence or with the application of a reduced P rate. In the clayey soil, HS does not affect the response of potato to P fertilization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

AbstractImproved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Surendra Kumar Meena ◽  
Renu Pandey ◽  
Sandeep Sharma ◽  
Gayacharan ◽  
Tarun Kumar ◽  
...  

To understand the physiological basis of tolerance to combined stresses to low phosphorus (P) and drought in mungbean (Vignaradiata (L.) R. Wilczek), a diverse set of 100 accessions were evaluated in hydroponics at sufficient (250 μM) and low (3 μM) P and exposed to drought (dehydration) stress. The principal component analysis and ranking of accessions based on relative values revealed that IC280489, EC397142, IC76415, IC333090, IC507340, and IC121316 performed superior while IC119005, IC73401, IC488526, and IC325853 performed poorly in all treatments. Selected accessions were evaluated in soil under control (sufficient P, irrigated), low P (without P, irrigated), drought (sufficient P, withholding irrigation), and combined stress (low P, withholding irrigation). Under combined stress, a significant reduction in gas exchange traits (photosynthesis, stomatal conductance, transpiration, instantaneous water use efficiency) and P uptake in seed and shoot was observed under combined stress as compared to individual stresses. Among accessions, IC488526 was most sensitive while IC333090 and IC507340 exhibited tolerance to individual or combined stress. The water balance and low P adaptation traits like membrane stability index, relative water content, specific leaf weight, organic acid exudation, biomass, grain yield, and P uptake can be used as physiological markers to evaluate for agronomic performance. Accessions with considerable tolerance to low P and drought stress can be either used as ‘donors’ in Vigna breeding program or cultivated in areas with limited P and water availability or both.


2017 ◽  
Vol 65 (1) ◽  
pp. 50 ◽  
Author(s):  
Muhammad Yousuf Ali ◽  
Ana Pavasovic ◽  
Peter B. Mather ◽  
Peter J. Prentis

Carbonic anhydrase (CA), Na+/K+-ATPase (NKA) and Vacuolar-type H+-ATPase (HAT) play vital roles in osmoregulation and pH balance in decapod crustaceans. As variable pH levels have a significant impact on the physiology of crustaceans, it is crucial to understand the mechanisms by which an animal maintains its internal pH. We examined expression patterns of cytoplasmic (CAc) and membrane-associated form (CAg) of CA, NKA α subunit and HAT subunit a in gills of freshwater crayfish, Cherax quadricarinatus, at three pH levels – 6.2, 7.2 (control) and 8.2 – over 24 h. Expression levels of CAc were significantly increased at low pH and decreased at high pH conditions 24 h after transfer. Expression increased at low pH after 12 h, and reached its maximum level by 24 h. CAg showed a significant increase in expression at 6 h after transfer at low pH. Expression of NKA significantly increased at 6 h after transfer to pH 6.2 and remained elevated for up to 24 h. Expression for HAT and NKA showed similar patterns, where expression significantly increased 6 h after transfer to low pH and remained significantly elevated throughout the experiment. Overall, CAc, CAg, NKA and HAT gene expression is induced at low pH conditions in freshwater crayfish.


1990 ◽  
Vol 20 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Paul E. Heilman

Eleven months after the May 1980 eruption of Mount Saint Helens in southeastern Washington, United States, three Populus clones were planted in an experiment on the Toutle River mudflow deposit. The trees grew at an abnormally slow rate and by 3 years were overtopped by a dense stand (14 600 ± 3600 trees/ha) of red alder seeded naturally onto the site. Over the 6-year period of the study, the total N content of the soil increased an average of 56 kg•ha−1•year−1•. Foliar N concentration in Populus increased significantly from a mean late summer – early autumn value in the 2nd year (1982) of 0.69% N to a value of 2.06% N at the end of the seventh growing season. The mean annual height growth of the largest Populus averaged <0.5 m/year in the first 3 years, increasing to an average of over 1.0 m/year in the 5th and 6th years. Fertilizer treatments with N (as urea) and N + P (as urea plus treble superphosphate) placed in the soil near the individual Populus at a maximum rate of 5.3 g N/tree increased height growth in the year of fertilization (1982) and the following year (the response in height growth for the 2 years totaled 64%). After 1984, no significant effects of fertilizer on height growth, total height, or diameter were evident. Nitrogen fertilization significantly increased foliar N concentration (1.54% N with the highest N treatment vs. 0.69% N in the control) in the year of treatment only. Phosphorus fertilization had no significant effect on growth or foliar P concentration. At 6 years, only 2% of the Populustrichocarpa Torr. & Gray clone and 13% of the tallest Populus hybrid were equal to or above the mean height of alder dominants and codominants (6.2 m). Additionally, the diameter growth of Populus was severely limited: the trees had only 8% of the cross-sectional area of "normal" trees for their height. Results indicated that on sites of low N such as the mudflow, Populus may not compete satisfactorily in mixture with alder. Such behavior is in sharp contrast to sites of high N, where red alder cannot compete with Populus.


Sign in / Sign up

Export Citation Format

Share Document