Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty

2008 ◽  
Vol 38 (6) ◽  
pp. 1661-1675 ◽  
Author(s):  
Thomas Wutzler ◽  
Christian Wirth ◽  
Jens Schumacher

This study provides a comprehensive set of functions for predicting biomass for Common beech ( Fagus sylvatica L.) in Central Europe for all major tree compartments. The equations are based on data of stem, branch, timber, brushwood (wood with diameter below 5 or 7 cm), foliage, root, and total aboveground biomass of 443 trees from 13 studies. We used nonlinear mixed-effects models to assess the contribution of fixed effects (tree dimensions, site descriptors), random effects (grouping according to studies), and residual variance to the total variance and to obtain realistic estimates of uncertainty of biomass on an aggregated level. Candidate models differed in their basic form, the description of the variance, and inclusion of various combinations of additional fixed and random effects and were compared using the Akaike information criterion. Model performance increased most when accounting for between-study differences in the variability of biomass predictions. Further, performance increased with the inclusion of age, site index, and altitude as predictor variables. We show that neglecting variance partitioning and the fact that prediction errors of trees are not independent with respect to their predictor variables will lead to a significant underestimation of prediction variance.

2012 ◽  
Vol 55 (2) ◽  
pp. 105-112
Author(s):  
L. Vostrý ◽  
K. Mach ◽  
J. Přibyl

Abstract. The objective of this paper was to select a suitable data subset and statistical model for the estimation of genetic parameters for 36 traits of the linear type in 977 Old Kladruber horses. Two subsets were tested to identify a suitable subset for analysis. One subset included repeated evaluation of certain individuals, whereas the other did not. The most suitable subset included repeated evaluation (n=1 390). The selection of a suitable model was made from 4 candidate models. These models comprised a number of random effects (direct individual effect and animal permanent environmental effect of the animal) and a number of fixed effects (colour variant, stud, colour variant × stud interaction, sex, age at description, year of birth, year of description). The model was selected based on the Akaike information criterion (AIC, Akaike 1974), residual variance and heritability coefficient. The model that included colour variant, stud, colour variant × stud interaction, sex, age at description, and year of description as fixed effects and direct individual and animal permanent environment as random effects was the most suitable model for the estimation of genetic parameters and for the subsequent estimation of breeding values.


2011 ◽  
Vol 41 (12) ◽  
pp. 2267-2275 ◽  
Author(s):  
Matthew B. Russell ◽  
Aaron R. Weiskittel ◽  
John A. Kershaw

Tree basal area (ba) or diameter at breast height (dbh) are universally used to represent tree secondary growth in individual tree based growth models. However, the long-term implications of using either ba or dbh for predictions are rarely fully assessed. In this analysis, Δba and Δdbh increment equations were fit to identical datasets gathered from six conifer and four hardwood species grown in central Maine. The performance of Δba and Δdbh predictions from nonlinear mixed-effects models were then compared with observed growth measurements of up to 29 years via a Monte Carlo simulation. Two evaluation statistics indicated substantial improvement in forecasting dbh using Δdbh rather than Δba. Root mean squared error (RMSE) and percentage mean absolute deviation (MAD%) were reduced by 14% and 15% on average, respectively, across all projection length intervals (5–29 years) when Δdbh was used over Δba. Differences were especially noted as projection lengths increased. RMSE and MAD% were reduced by 24% when Δdbh was employed over Δba at longer projection lengths (up to 29 years). Simulations found that simulating random effects rather than using local estimates for random effects performed as well or better at longer interval lengths. These results highlight the implications that selecting a growth model dependent variable can have and the importance of incorporating model uncertainty into the growth projections of individual tree based models.


2011 ◽  
Vol 480-481 ◽  
pp. 1308-1312
Author(s):  
Yao Xiang Li ◽  
Li Chun Jiang

Mixed Effect models are flexible models to analyze grouped data including longitudinal data, repeated measures data, and multivariate multilevel data. One of the most common applications is nonlinear growth data. The Chapman-Richards model was fitted using nonlinear mixed-effects modeling approach. Nonlinear mixed-effects models involve both fixed effects and random effects. The process of model building for nonlinear mixed-effects models is to determine which parameters should be random effects and which should be purely fixed effects, as well as procedures for determining random effects variance-covariance matrices (e.g. diagonal matrices) to reduce the number of the parameters in the model. Information criterion statistics (AIC, BIC and Likelihood ratio test) are used for comparing different structures of the random effects components. These methods are illustrated using the nonlinear mixed-effects methods in S-Plus software.


2012 ◽  
Vol 69 (11) ◽  
pp. 1881-1893 ◽  
Author(s):  
Verena M. Trenkel ◽  
Mark V. Bravington ◽  
Pascal Lorance

Catch curves are widely used to estimate total mortality for exploited marine populations. The usual population dynamics model assumes constant recruitment across years and constant total mortality. We extend this to include annual recruitment and annual total mortality. Recruitment is treated as an uncorrelated random effect, while total mortality is modelled by a random walk. Data requirements are minimal as only proportions-at-age and total catches are needed. We obtain the effective sample size for aggregated proportion-at-age data based on fitting Dirichlet-multinomial distributions to the raw sampling data. Parameter estimation is carried out by approximate likelihood. We use simulations to study parameter estimability and estimation bias of four model versions, including models treating mortality as fixed effects and misspecified models. All model versions were, in general, estimable, though for certain parameter values or replicate runs they were not. Relative estimation bias of final year total mortalities and depletion rates were lower for the proposed random effects model compared with the fixed effects version for total mortality. The model is demonstrated for the case of blue ling (Molva dypterygia) to the west of the British Isles for the period 1988 to 2011.


2020 ◽  
pp. 1-20
Author(s):  
Chad Hazlett ◽  
Leonard Wainstein

Abstract When working with grouped data, investigators may choose between “fixed effects” models (FE) with specialized (e.g., cluster-robust) standard errors, or “multilevel models” (MLMs) employing “random effects.” We review the claims given in published works regarding this choice, then clarify how these approaches work and compare by showing that: (i) random effects employed in MLMs are simply “regularized” fixed effects; (ii) unmodified MLMs are consequently susceptible to bias—but there is a longstanding remedy; and (iii) the “default” MLM standard errors rely on narrow assumptions that can lead to undercoverage in many settings. Our review of over 100 papers using MLM in political science, education, and sociology show that these “known” concerns have been widely ignored in practice. We describe how to debias MLM’s coefficient estimates, and provide an option to more flexibly estimate their standard errors. Most illuminating, once MLMs are adjusted in these two ways the point estimate and standard error for the target coefficient are exactly equal to those of the analogous FE model with cluster-robust standard errors. For investigators working with observational data and who are interested only in inference on the target coefficient, either approach is equally appropriate and preferable to uncorrected MLM.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hui Meng ◽  
Yunping Zhou ◽  
Yunxia Jiang

AbstractObjectivesThe results of existing studies on bisphenol A (BPA) and puberty timing did not reach a consensus. Thereby we performed this meta-analytic study to explore the association between BPA exposure in urine and puberty timing.MethodsMeta-analysis of the pooled odds ratios (OR), prevalence ratios (PR) or hazards ratios (HR) with 95% confidence intervals (CI) were calculated and estimated using fixed-effects or random-effects models based on between-study heterogeneity.ResultsA total of 10 studies involving 5621 subjects were finally included. The meta-analysis showed that BPA exposure was weakly associated with thelarche (PR: 0.96, 95% CI: 0.93–0.99), while no association was found between BPA exposure and menarche (HR: 0.99, 95% CI: 0.89–1.12; OR: 1.02, 95% CI: 0.73–1.43), and pubarche (OR: 1.00, 95% CI: 0.79–1.26; PR: 1.00, 95% CI: 0.95–1.05).ConclusionsThere was no strong correlation between BPA exposure and puberty timing. Further studies with large sample sizes are needed to verify the relationship between BPA and puberty timing.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jenny Alderden ◽  
Kathryn P. Drake ◽  
Andrew Wilson ◽  
Jonathan Dimas ◽  
Mollie R. Cummins ◽  
...  

Abstract Background Hospital-acquired pressure injuries (HAPrIs) are areas of damage to the skin occurring among 5–10% of surgical intensive care unit (ICU) patients. HAPrIs are mostly preventable; however, prevention may require measures not feasible for every patient because of the cost or intensity of nursing care. Therefore, recommended standards of practice include HAPrI risk assessment at routine intervals. However, no HAPrI risk-prediction tools demonstrate adequate predictive validity in the ICU population. The purpose of the current study was to develop and compare models predicting HAPrIs among surgical ICU patients using electronic health record (EHR) data. Methods In this retrospective cohort study, we obtained data for patients admitted to the surgical ICU or cardiovascular surgical ICU between 2014 and 2018 via query of our institution's EHR. We developed predictive models utilizing three sets of variables: (1) variables obtained during routine care + the Braden Scale (a pressure-injury risk-assessment scale); (2) routine care only; and (3) a parsimonious set of five routine-care variables chosen based on availability from an EHR and data warehouse perspective. Aiming to select the best model for predicting HAPrIs, we split each data set into standard 80:20 train:test sets and applied five classification algorithms. We performed this process on each of the three data sets, evaluating model performance based on continuous performance on the receiver operating characteristic curve and the F1 score. Results Among 5,101 patients included in analysis, 333 (6.5%) developed a HAPrI. F1 scores of the five classification algorithms proved to be a valuable evaluation metric for model performance considering the class imbalance. Models developed with the parsimonious data set had comparable F1 scores to those developed with the larger set of predictor variables. Conclusions Results from this study show the feasibility of using EHR data for accurately predicting HAPrIs and that good performance can be found with a small group of easily accessible predictor variables. Future study is needed to test the models in an external sample.


Author(s):  
Fiorella Pia Salvatore ◽  
Alessia Spada ◽  
Francesca Fortunato ◽  
Demetris Vrontis ◽  
Mariantonietta Fiore

The purpose of this paper is to investigate the determinants influencing the costs of cardiovascular disease in the regional health service in Italy’s Apulia region from 2014 to 2016. Data for patients with acute myocardial infarction (AMI), heart failure (HF), and atrial fibrillation (AF) were collected from the hospital discharge registry. Generalized linear models (GLM), and generalized linear mixed models (GLMM) were used to identify the role of random effects in improving the model performance. The study was based on socio-demographic variables and disease-specific variables (diagnosis-related group, hospitalization type, hospital stay, surgery, and economic burden of the hospital discharge form). Firstly, both models indicated an increase in health costs in 2016, and lower spending values for women (p < 0.001) were shown. GLMM indicates a significant increase in health expenditure with increasing age (p < 0.001). Day-hospital has the lowest cost, surgery increases the cost, and AMI is the most expensive pathology, contrary to AF (p < 0.001). Secondly, AIC and BIC assume the lowest values for the GLMM model, indicating the random effects’ relevance in improving the model performance. This study is the first that considers real data to estimate the economic burden of CVD from the regional health service’s perspective. It appears significant for its ability to provide a large set of estimates of the economic burden of CVD, providing information to managers for health management and planning.


Sign in / Sign up

Export Citation Format

Share Document