Response of plant community abundance and diversity during 10 years of cattle exclusion within silvopasture systems

2012 ◽  
Vol 42 (3) ◽  
pp. 451-462 ◽  
Author(s):  
Pontus M.F. Lindgren ◽  
Thomas P. Sullivan

The effects of cattle ( Bos taurus L.) grazing on upland plant communities in forested rangelands are poorly understood. Cattle interactions with plant communities were studied in intensively managed (precommercially thinned (PCT) and repeatedly fertilized) silvopasture systems in young lodgepole pine ( Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests. We investigated the response of plant community abundance and diversity to cattle grazing and how these responses were affected by PCT and repeated fertilization. The study was conducted inside and outside cattle exclosures over 10 years in two regional replicates in south-central British Columbia, Canada. PCT and repeated fertilization increased both the amount and quality of forage. Effects of cattle grazing on plant community abundance and diversity were variable and significantly influenced by the nutrient status of the site. In fertilized stands, cattle grazing increased species richness and diversity, particularly for the herb layer, although these treatment effects often took several years to be expressed. In unfertilized stands, cattle grazing did not significantly reduce herb or shrub volumes; however, species richness and, to a lesser extent, diversity of the shrub layer declined. In a landscape context, management strategies for silvopasture should promote heterogeneity for conservation of plant diversity through a variety of grazing pressures, as well as forest enhancement treatments such as PCT and repeated fertilization.

Hacquetia ◽  
2016 ◽  
Vol 15 (2) ◽  
pp. 21-35 ◽  
Author(s):  
Alina Baranova ◽  
Udo Schickhoff ◽  
Shunli Wang ◽  
Ming Jin

Abstract Environmental degradation of pasture areas in the Qilian Mountains (Gansu province, NW China) has increased in recent years. Soil erosion and loss of biodiversity caused by overgrazing is widespread. Changes in plant cover, however, have not been analysed so far. The aim of this paper is to identify plant communities and to detect grazing-induced changes in vegetation patterns. Quantitative and qualitative relevé data were collected for community classification and to analyse gradual changes in vegetation patterns along altitudinal and grazing gradients. Detrended correspondence analysis (DCA) was used to analyse variation in relationships between vegetation, environmental factors and differential grazing pressure. The results of the DCA showed apparent variation in plant communities along the grazing gradient. Two factors - altitude and exposure - had the strongest impact on plant community distribution. Comparing monitoring data for the most recent nine years, a trend of pasture deterioration, plant community successions and shift in dominant species becomes obvious. In order to increase grassland quality, sustainable pasture management strategies should be implemented.


Author(s):  
Marju Prass ◽  
Satu Ramula ◽  
Miia Jauni ◽  
Heikki Setälä ◽  
D. Johan Kotze

AbstractThe ecological impacts of invasive species may change or accumulate with time since local invasion, potentially inducing further changes in communities and the abiotic environment. Yet, time since invasion is rarely considered when investigating the ecological impacts of invasive non-native species. To examine the effect of time since invasion on the ecological impacts of Lupinus polyphyllus, a perennial nitrogen-fixing herb, we surveyed vascular plant communities in the presence and absence of L. polyphyllus in young, intermediate, and old semi-natural grassland sites (ca. 5, 10, 15 years representing both time since lupine invasion and plant community age). We analyzed vascular plant community composition, vascular plant species richness, and the cover of various ecological plant groups and L. polyphyllus. In contrast to our hypotheses, we found no change in the mean cover of L. polyphyllus (about 35%) with time since local invasion, and an ordination did not suggest marked changes in plant community composition. L. polyphyllus was associated with lower species richness in invaded plant communities but this effect did not change with time since invasion. Invaded plant communities were also associated with lower occurrence of generalist, oligotrophic (low-nutrient-adapted) and copiotrophic (nutrient-demanding) species but no temporal dynamics were detected. We conclude that even the intermediate cover of L. polyphyllus can reduce plant species richness, but the ecological impact caused by this invader might not dramatically change or accumulate with time since invasion.


2019 ◽  
Vol 41 (5) ◽  
pp. 441 ◽  
Author(s):  
Maggie L. Creamer ◽  
Leslie M. Roche ◽  
Kristina M. Horback ◽  
Tina L. Saitone

Optimising beef cattle (Bos taurus and Bos indicus) distribution, both spatially and temporally, is one of the most significant challenges associated with managing extensive grazed rangelands. Landscape variability and behavioural patterns of cattle may lead to non-uniform and inefficient forage utilisation, damage to critical habitats, and water quality impairment. In order to overcome these distribution challenges, a large suite of tools have been developed and researched to optimise grazing patterns. The objectives of this synthesis paper are 2-fold: (i) to survey and categorise distribution tools; and (ii) to analyse the connectivity of existing research across academic disciplines to identify and isolate knowledge gaps. A systematic literature review revealed specific types of tools and strategies to improve cattle distribution, which were categorised as either ‘animal’ or ‘environmental manipulations’. Animal manipulations utilise aspects of individual behaviour and herd dynamics to alter grazing patterns, whereas environmental manipulations involve transforming aspects of the animal’s surroundings to overcome challenges associated with inefficient distribution. This review reveals that strategies are overwhelmingly studied in isolation, and that there is potential to increase efficacy by integrating multiple strategies to achieve a desired outcome. Motivated by these findings, an author collaboration network analysis was conducted to investigate connectivity within and among author fields of expertise to understand why more integrated management strategies are not currently studied. Authors were classified into five fields of research: animal behaviour science, animal production science, biophysical rangeland science, economics, and other. The network analysis revealed that communities of authors contributing to papers on enhancing cattle distribution are disjointed. These results suggest that in order to fulfil knowledge gaps about the efficacy and cost of management strategies, there needs to be interdisciplinary engagement with particular attention to strategies that integrate animal and environmental manipulations to enhance cattle grazing distribution on extensively grazed landscapes.


2014 ◽  
Vol 23 (11) ◽  
pp. 2875-2901 ◽  
Author(s):  
Paul R. Lintott ◽  
Nils Bunnefeld ◽  
Elisa Fuentes-Montemayor ◽  
Jeroen Minderman ◽  
Lorna M. Blackmore ◽  
...  

Author(s):  
Maarten B. Eppinga ◽  
Elizabeth A. Haber ◽  
Luke Sweeney ◽  
Maria J. Santos ◽  
Max Rietkerk ◽  
...  

AbstractInvasions by non-native plant species are widely recognized as a major driver of biodiversity loss. Globally, (sub-)tropical islands form important components of biodiversity hotspots, while being particularly susceptible to invasions by plants in general and vines in particular. We studied the impact of the invasive vine A. leptopus on the diversity and structure of recipient plant communities on the northern Caribbean island St. Eustatius. We used a paired-plot design to study differences in species richness, evenness and community structure under A. leptopus-invaded and uninvaded conditions. Community structure was studied through species co-occurrence patterns. We found that in plots invaded by A. leptopus, species richness was 40–50% lower, and these plots also exhibited lower evenness. The magnitude of these negative impacts increased with increasing cover of A. leptopus. Invaded plots also showed higher degrees of homogeneity in species composition. Species co-occurrence patterns indicated that plant communities in uninvaded plots were characterized by segregation, whereas recipient plant communities in invaded plots exhibited random co-occurrence patterns. These observations suggest that invasion of A. leptopus is not only associated with reduced species richness and evenness of recipient communities in invaded sites, but also with a community disassembly process that may reduce diversity between sites. Given that A. leptopus is a successful invader of (sub-)tropical islands around the globe, these impacts on plant community structure highlight that this invasive species could be a particular conservation concern for these systems.


2018 ◽  
Vol 48 (8) ◽  
pp. 976-982 ◽  
Author(s):  
Michelle Elise Spicer ◽  
Kyle F. Suess ◽  
John W. Wenzel ◽  
Walter P. Carson

While large-scale wind disturbances are rare, they are nonetheless powerful drivers of plant community reassembly in temperate forests worldwide. These disturbances cause the formation of tree tip-up mounds that serve as regeneration niches, but the time scale at which novel plant communities develop on mounds is unknown. Moreover, salvage logging can cause mounds to “tip back down” and could therefore erase these microsites. Here, we test three hypotheses with a replicated field experiment: (1) novel plant communities rapidly form on tip-up mounds; (2) salvaging erases these microsites; and (3) “tipped-down” tip-up mounds are novel intermediate microsites. We salvaged a random half of four 3–6 ha blowdowns created by an F1 tornado, measured 249 mounds, and censused the vegetation on 48 mounds and 48 reference plots. Plant communities on mounds had two to three fewer species, 50% less cover, and lower diversity than reference communities. However, salvaging caused modest increases in species richness and diversity on mounds and caused 40% of mounds to tip back down. The physical characteristics and vegetation of these tipped-down “inclined mounds” were more similar to vertical mounds than to reference plots. Our results suggest that salvaging may increase microsite heterogeneity across the landscape by creating novel intermediate mounds.


2021 ◽  
Author(s):  
Luoshu He ◽  
Suhui Ma ◽  
Jiangling Zhu ◽  
Xinyu Xiong ◽  
Yangang Li ◽  
...  

Abstract Purpose The local microclimate of different slope aspects in the same area can not only impact soil environment and plant community but also affect soil microbial community. However, the relationship between aboveground plant communities and belowground soil microbial communities on various slope aspects has not been well understood.Methods We investigated the above- and belowground relationship on different slope aspects and explored how soil properties influence this relationship. Plant community attributes were evaluated by plant species richness and plant total basal area. Soil microbial community was assessed based on both 16S rRNA and ITS rRNA, using High-throughput Illumina sequencing. Results There was no significant correlation between plant richness and soil bacterial community composition on the north slope, but there was a positive correlation on the south slope and a significantly negative correlation on the flat site. There was a significantly negative correlation between soil fungal community composition and plant total basal area, which did not change with the slope aspect. In addition, there was no significant correlation between plant community species richness and soil microbial species richness.Conclusions In subalpine coniferous forests, the relationship between plant-soil bacteria varies with slope aspect, but the plant-soil fungi relationship is relatively consistent across different slope aspects. These results can improve our understanding of the relationship between plant and soil microorganisms in forest ecosystems under microtopographic changes and have important implications for the conservation of biodiversity and forest management in subalpine coniferous forests.


2014 ◽  
Vol 20 (3) ◽  
pp. 237 ◽  
Author(s):  
Peter J Berney ◽  
G. Glenn Wilson ◽  
Darren S. Ryder ◽  
R.D.B Whalley ◽  
John Duggin ◽  
...  

We examined the effects of grazing exclusion over a period of 14 years on the species richness and community composition of three plant communities with different dominant species and water regimes in the Gwydir Wetlands in eastern Australia. Responses to grazing exclusion varied among the three plant communities, and were most likely to be evident during dry periods rather than during periods of inundation. In frequently flooded plant communities, there was an increase in phytomass following exclusion of domestic livestock, but changes in plant community composition and species richness due to livestock exclusion varied depending on the morphological attributes of the dominant plant species. In a plant community where tall sedge species were dominant, livestock exclusion further increased their dominance and overall species richness declined. In contrast, where a prostrate grass species such as Paspalum distichum was dominant, species richness increased following livestock exclusion, due to an increase in the abundance of taller dicotyledon species. However, livestock exclusion in a community where flooding was less frequent and native grass species have been largely replaced with the introduced species Phyla canescens, resulted in no significant changes to phytomass, species richness or community composition among the grazing exclusion treatments over time. Our results indicate responses to exclusion of domestic livestock are dependent upon the dominant species within the plant community and will likely vary over time with the extent of wetland inundation. Grazing exclusion alone, without increased flooding, is unlikely to restore floristically degraded floodplain plant communities.


2006 ◽  
Vol 36 (9) ◽  
pp. 2131-2140 ◽  
Author(s):  
John M Hagan ◽  
Sacha Pealer ◽  
Andrew A Whitman

Defining riparian zones is important because sustainable forestry programs typically include a requirement to protect riparian zones. To help determine whether small first-order headwater streams have a riparian zone, we surveyed vascular plant communities along 15 streams in a managed forest landscape in western Maine, USA. Along each stream we recorded all vascular plant species in 5 m × 50 m quadrats at different lateral distances from the stream bank: 0–5, 13–18, 25–30, and 40–45 m. Trees and shrubs showed no statistical differences among zones in either species richness or community composition. Species richness of herbaceous plants was greater in the 0-5 m zone adjacent to the stream bank than in other zones, and species composition of herbaceous plants was statistically different in the 0–5 m zone relative to more distant zones. Twenty-four herbaceous species (of 129) were determined to be indicators of the riparian plant community. Twenty-three of the 24 indicator species were more likely to occur near the stream, and 1 species was more likely to be found away from the stream (a negative riparian indicator). These results show that a narrow riparian zone exists on small headwater streams that is reflected by the herbaceous plant community.


2020 ◽  
Vol 58 (1) ◽  
pp. 21-31
Author(s):  
Mengistu Teshome ◽  
Zebene Asfaw ◽  
Gemedo Dalle

Abstract For forest ecosystem management to be effective, explicit understanding of the species diversity-environmental relationship along elevation gradient is crucial. This study aimed at identifying and describing plant communities and also documenting their species diversity. Evaluation of relationships between selected environmental variables and species diversity was another objective of this study. Systematic sampling techniques were used to collect vegetation data in a total of forty two sample plots (size=20×20 m). Within main plots, four sub-plots of 5×5 m were established at four corners and – one sub-plot of the same size in the center. These plots were used for shrub and herb diversity assessment. Within each sample plot, all plant species were documented and their scientific names were identified. Environmental variables, such as: elevation, aspect and slope, were also recorded for each main plot. Species diversity was determined using Shannon-Wiener diversity index and evenness in R statistical software. Agglomerative hierarchical clustering method was used for plant community classification. The total of 44 plant species belonging to 30 families was documented. Four plant community types were identified with different diversity, evenness and species richness. These plant communities were: Afrocurpus falcatus-Ficus sur, Maesa lanceolata-Bersama abyssinica, Vernonia myriantha-Urera hypselodendron and Croton machrostachus-Tecleanobilis occurring at average elevation of 2521, 2429, 2329, and 2364 m asl, respectively. Maesa lanceolata-Bersama abyssinica community type exhibited the highest species diversity and evenness followed by Croton machrostachus-Teclea nobilis community type showing the fact that median elevation ranges were rich in species. Elevation and slope gradient explained significant variation in species richness in the studied forest. For effective conservation of biodiversity and sustainable management of the forest ecosystem, further research on the impacts of anthropogenic disturbances and soil properties is recommended as a result of this study.


Sign in / Sign up

Export Citation Format

Share Document