scholarly journals Antigonon leptopus invasion is associated with plant community disassembly in a Caribbean island ecosystem

Author(s):  
Maarten B. Eppinga ◽  
Elizabeth A. Haber ◽  
Luke Sweeney ◽  
Maria J. Santos ◽  
Max Rietkerk ◽  
...  

AbstractInvasions by non-native plant species are widely recognized as a major driver of biodiversity loss. Globally, (sub-)tropical islands form important components of biodiversity hotspots, while being particularly susceptible to invasions by plants in general and vines in particular. We studied the impact of the invasive vine A. leptopus on the diversity and structure of recipient plant communities on the northern Caribbean island St. Eustatius. We used a paired-plot design to study differences in species richness, evenness and community structure under A. leptopus-invaded and uninvaded conditions. Community structure was studied through species co-occurrence patterns. We found that in plots invaded by A. leptopus, species richness was 40–50% lower, and these plots also exhibited lower evenness. The magnitude of these negative impacts increased with increasing cover of A. leptopus. Invaded plots also showed higher degrees of homogeneity in species composition. Species co-occurrence patterns indicated that plant communities in uninvaded plots were characterized by segregation, whereas recipient plant communities in invaded plots exhibited random co-occurrence patterns. These observations suggest that invasion of A. leptopus is not only associated with reduced species richness and evenness of recipient communities in invaded sites, but also with a community disassembly process that may reduce diversity between sites. Given that A. leptopus is a successful invader of (sub-)tropical islands around the globe, these impacts on plant community structure highlight that this invasive species could be a particular conservation concern for these systems.

2015 ◽  
Vol 8 (3) ◽  
pp. 292-306 ◽  
Author(s):  
John Derek Scasta ◽  
David M. Engle ◽  
Samuel D. Fuhlendorf ◽  
Daren D. Redfearn ◽  
Terrance G. Bidwell

AbstractIntroducing exotic forages in the attempt to enhance livestock and wildlife forage has been practiced widely for over a century. These forage species are selected for traits conferring persistence under stress, potentially yielding invaders that transform native plant communities. Using standardized systematic review guidelines and meta-analytical techniques we quantified effects of exotic forage invasion on change of native plant community structure, and compared the magnitude and direction of change across exotic forage species, plant functional groups, and structure of plant communities. Our study of 13 exotic forage species in North America (six C4 grasses, three C3 grasses, and four legumes) yielded 35 papers with quantitative data from 64 case studies. Nine of the 13 species met our inclusion criteria for meta-analysis. The overall effect of exotic forage invasion on native plant communities was negative (Ē̄ = −0.74; 95% confidence interval [CI]: −0.29 to −0.25). The effect size was most negative for two C4 grasses, Lehmann lovegrass and Old World bluestems. A negative effect was also expressed by C3 and C4 grass functional groups, and these effects were stronger than for legumes. Effect size differed among measures of plant community structure, with the greatest negative effect on native plant biomass and the least negative effect on species evenness. Weighted fail-safe numbers indicated publication bias was not an issue. Exotic forage species are important for agricultural production but may threaten complex multi-functioning landscapes and should be considered as a subset of potentially invasive exotic species. Characteristics making exotic forages different from other exotic plants hinge on pathways of selection and dispersion: selection is based on persistence mechanisms similar to characteristics of invasive plants; dispersion by humans is intentional across expansive geographic regions. Exotic forages present a complex socio-ecological problem exacerbated by disconnected scientific disciplines, competing interests between policy and science, and organized efforts to increase food production.


2018 ◽  
Author(s):  
Romain Savary ◽  
Lucas Villard ◽  
Ian R. Sanders

AbstractArbuscular mycorrhizal fungi (AMF) have been shown to influence plant community structure and diversity. Studies based on single plant - single AMF isolate experiments show that within AMF species variation leads to large differential growth responses of different plant species. Because of these differential effects, genetic differences among isolates of an AMF species could potentially have strong effects on the structure of plant communities.We tested the hypothesis that within species variation in the AMF R. irregularis significantly affects plant community structure and plant co-existence. We took advantage of a recent genetic characterization of several isolates using double-digest restriction-site associated DNA sequencing (ddRADseq). This allowed us to test not only for the impact of within AMF species variation on plant community structure but also for the role of the R. irregularis phylogeny on plant community metrics. Nine isolates of R. irregularis, belonging to three different genetic groups (Gp1, Gp3 and Gp4), were used as either single inoculum or as mixed diversity inoculum. Plants in a mesocosm representing common species that naturally co-exist in European grasslands were inoculated with the different AMF treatments.We found that within-species differences in R. irregularis did not strongly influence the performance of individual plants or the structure of the overall plant community. However, the evenness of the plant community was affected by the phylogeny of the fungal isolates, where more closely-related AMF isolates were more likely to affect plant community evenness in a similar way compared to more genetically distant isolates.This study underlines the effect of within AMF species variability on plant community structure. While differential effects of the AMF isolates were not strong, a single AMF species had enough functional variability to change the equilibrium of a plant community in a way that is associated with the evolutionary history of the fungus.


2007 ◽  
Vol 55 (5) ◽  
pp. 521 ◽  
Author(s):  
Andrew C. Baker ◽  
Brad R. Murray ◽  
Grant C. Hose

Radiata pine (Pinus radiata D.Don) plantations are often found in close proximity to vegetation set aside for biodiversity conservation. We examined the intrusive effects of radiata pine beyond the confines of plantations by quantifying the penetration of pine litter (needles, cones, twigs and seeds) and wildings from plantations into adjacent eucalypt woodland in the Jenolan Caves Karst Conservation Reserve (south-eastern Australia). We then investigated the relationship between pine-litter intrusion and plant-community structure in adjacent woodland vegetation. We found significantly higher quantities of pine litter and wildings at all sites adjacent to plantations than at reference woodland sites that were not adjacent to plantations. At adjacent sites, pine litter decreased significantly with increasing distance from plantations. Alarmingly, native plant species richness declined and exotic plant species richness increased with increasing quantities of pine litter. Thus, there were fewer native plant species and more exotics in areas bordering pine plantations. Our findings suggest a potentially important link between the intrusion of pine litter and a loss of native biodiversity and facilitation of exotic-species invasion. We suggest the provision of a buffer zone around plantations in order to minimise intrusive impacts of plantations on native biodiversity.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


2012 ◽  
Vol 468-471 ◽  
pp. 2764-2770
Author(s):  
Shan Lu ◽  
Bo Chen ◽  
Shao Qing Hu ◽  
Jing Jing Zhang ◽  
Jun Hao Jiang ◽  
...  

Urban close-to-nature plant community is a sustainable design and construction philosophy of landscape greenbelt planning. However, there is no explicit guide for constructing close-to-nature plant community Based on the analysis of community structure and characteristics of 10 typical natural plant communities in the West Lake Scenic Area in Hangzhou and summary of the features of natural community, as well as the analysis of plant landscape of Hangzhou Huagangguanyu Park to prove that the close-to-nature man-made plant community and natural plant community are interrelated in respect of vegetation composition and community structure, this paper puts forward to the essential construction methods of the close-to-nature landscape community, providing theoretical basis for research and construction of urban close-to-nature landscape plant community in China.


2019 ◽  
Vol 12 (1) ◽  
pp. 204 ◽  
Author(s):  
Yang Cao ◽  
Yosihiro Natuhara

Riparian areas are local hot spots of biodiversity that are vulnerable and easily degraded. Comparing plant communities in habitats with different degrees of urbanization may provide valuable information for the management and restoration of these vulnerable habitats. In this study, we explored the impact of urbanization on vegetation communities between artificial and semi-natural habitats within two rivers with different levels of development. We compared species richness, types of vegetation, and composition patterns of the plants in our study. In artificial habitats, the sites with relatively high levels of urbanization had the highest species richness, while in semi-natural habitats, the highest species richness was recorded in the less urbanized sites. Furthermore, every component of urbanization that contributed to the variation of species richness was examined in the current study. In artificial habitats, the proportion of impervious surface was the strongest predictor of the variation in species richness and was associated with the richness of alien, native, and riparian species. In semi-natural habitats, most of the richness of alien and native species were associated with the distance to the city center, and the number of riparian and ruderal species was significantly related to the proportion of impervious surface. Moreover, we found that a high level of urbanization was always associated with a large abundance of alien and ruderal species in both artificial and in semi-natural habitats. We recommend the methods of pair comparison of multiple rivers to analyze the impact of urbanization on plant species in riparian areas and have suggested various management actions for maintaining biodiversity and sustainability in riparian ecosystems.


Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 300 ◽  
Author(s):  
Pradeep Wagle ◽  
Prasanna Gowda

Adoption of better management practices is crucial to lessen the impact of anthropogenic disturbances on tallgrass prairie systems that contribute heavily for livestock production in several states of the United States. This article reviews the impacts of different common management practices and disturbances (e.g., fertilization, grazing, burning) and tallgrass prairie restoration on plant growth and development, plant species composition, water and nutrient cycles, and microbial activities in tallgrass prairie. Although nitrogen (N) fertilization increases aboveground productivity of prairie systems, several factors greatly influence the range of stimulation across sites. For example, response to N fertilization was more evident on frequently or annually burnt sites (N limiting) than infrequently burnt and unburnt sites (light limiting). Frequent burning increased density of C4 grasses and decreased plant species richness and diversity, while plant diversity was maximized under infrequent burning and grazing. Grazing increased diversity and richness of native plant species by reducing aboveground biomass of dominant grasses and increasing light availability for other species. Restored prairies showed lower levels of species richness and soil quality compared to native remnants. Infrequent burning, regular grazing, and additional inputs can promote species richness and soil quality in restored prairies. However, this literature review indicated that all prairie systems might not show similar responses to treatments as the response might be influenced by another treatment, timing of treatments, and duration of treatments (i.e., short-term vs. long-term). Thus, it is necessary to examine the long-term responses of tallgrass prairie systems to main and interacting effects of combination of management practices under diverse plant community and climatic conditions for a holistic assessment.


2001 ◽  
Vol 31 (12) ◽  
pp. 2067-2079 ◽  
Author(s):  
Robert L Deal

The effects of partial cutting on plant species richness, community structure, and several understory species that are important for deer forage were evaluated on 73 plots in 18 stands throughout southeast Alaska. These partially cut stands were harvested 12–96 years ago when 16–96% of the former stand basal area was removed. The species richness and community structure of understory plants were similar in uncut and partially cut plots. However, plots where more than 50% of the basal area was cut had a significantly different plant community structure. Species composition and abundance also appeared to be distinctly different between hemlock-dominated and spruce-dominated stands. Partial cutting did not significantly change abundance for most of the important forage species for deer. The similarity in plant community structure between partially cut and uncut old-growth stands may be related to forest stand structures. The heterogeneous stand structures that develop after partial cutting are more similar to old-growth stands than to the uniform young-growth stands that develop after stand replacing disturbances such as clear-cutting.


2010 ◽  
Vol 3 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Travis L. Almquist ◽  
Rodney G. Lym

AbstractAminopyralid efficacy on Canada thistle (Cirsium arvense) and potential to injure native species was evaluated in a restored prairie at the Glacial Ridge Preserve managed by The Nature Conservancy in Polk County, MN. Canada thistle stem density was reduced from 17 to 0.1 stems m−2 10 mo after treatment (MAT) with aminopyralid applied in the fall at 120 g ha−1. Aminopyralid also altered the composition of both Canada thistle–infested and native plant communities. Aminopyralid controlled Canada thistle and removed or reduced several undesirable forb species from the restored prairie communities, such as absinth wormwood (Artemisia absinthium) and perennial sowthistle (Sonchus arvensis). A number of high seral forbs were also reduced or removed by aminopyralid, including maximilian sunflower (Helianthus maximiliani) and purple prairie clover (Dalea purpurea). Foliar cover of high seral forbs in the native plant community was reduced from 12.2 to 7% 22 MAT. The cover of high seral grass species, such as big bluestem (Andropogon gerardii) and Indiangrass (Sorghastrum nutans) increased after aminopyralid application in both the Canada thistle–infested and native plant communities and averaged 41.4% cover compared with only 19.4% before removal of Canada thistle. Species richness, evenness, and diversity were reduced after aminopyralid application in both Canada thistle–infested and native plant communities. However, the benefits of Canada thistle control, removal of undesirable species, and the increase in native grass cover should lead to an overall improvement in the long-term stability and composition of the restored prairie plant community, which likely outweigh the short-term effects of a Canada thistle control program.


2011 ◽  
Vol 4 (1) ◽  
pp. 50-57 ◽  
Author(s):  
G. S. Kleppel ◽  
Erin LaBarge

AbstractWe investigated the use of sheep for controlling the spread of purple loosestrife in a wet meadow in upstate New York from June to August 2008. Changes in the purple loosestrife population and vascular plant community structure were monitored as a function of the grazing of two ewes, “rotated” through four “experimental” paddocks at 2- to 3-d intervals. Comparative data were collected in “reference” paddocks from which sheep were excluded. Purple loosestrife was heavily grazed and most plants did not flower in experimental paddocks. Purple loosestrife cover declined by 40.7% in the experimental paddocks but did not change significantly in the reference paddocks. After grazing, species richness was 20% higher in experimental than reference paddocks.


Sign in / Sign up

Export Citation Format

Share Document