Fine and coarse root parameters from mature black spruce displaying genetic × soil moisture interaction in growth

2012 ◽  
Vol 42 (11) ◽  
pp. 1926-1938 ◽  
Author(s):  
John E. Major ◽  
Kurt H. Johnsen ◽  
Debby C. Barsi ◽  
Moira Campbell

Fine and coarse root biomass, C, and N mass parameters were assessed by root size and soil depths from soil cores in plots of 32-year-old black spruce ( Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and wet site. All fine and coarse root size categories had greater root biomass on the dry than on the wet site. Most of the site differences resided in 0–20 cm soil depth. The wet site had greater root N concentration than the dry site, despite the same soil N; thus, virtually no differences were observed in total fine and coarse root N mass between sites. Root N concentration declined with increases in both soil depth and root size. Fine roots (<2 mm) accounted for 73% and 38% of the total fine and coarse N and C mass, respectively. The dry site had lower needle mass and more fine root mass than the wet site, demonstrating an adaptation to moisture stress change through the rebalancing of resource-obtaining organs. Drought-tolerant families had the same quantity of fine roots as drought-intolerant families but were able to support more foliage and aboveground mass per unit fine root mass than intolerant families.

2012 ◽  
Vol 42 (11) ◽  
pp. 1939-1952 ◽  
Author(s):  
John E. Major ◽  
Kurt H. Johnsen ◽  
Debby C. Barsi ◽  
Moira Campbell

Total belowground biomass, soil C, and N mass were measured in plots of 32-year-old black spruce ( Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and a wet site. Stump root biomass was greater on the wet than on the dry site; however, combined fine and coarse root biomass was greater on the dry than on the wet site, resulting in no site root biomass differences. There were no site differences in root distribution by soil depth. Drought-tolerant families had greater stump root biomass and allocated relatively less to combined coarse and fine roots than drought-intolerant families. Fine roots (<2 mm) made up 10.9% and 50.2% of the belowground C and N biomass. Through 50 cm soil depth, mean total belowground C mass was 187.2 Mg·ha–1, of which 8.9%, 3.4%, 0.7%, and 87.0% were from the stump root, combined fine and coarse roots, necromass, and soil, respectively. Here, we show that belowground C sequestration generally mirrors (mostly from stump roots) aboveground growth, and thus, trends in genetic and genetic × environment productivity effects result in similar effects on belowground C sequestration. Thus, tree improvement may well be an important avenue to help stem increases in atmospheric CO2.


1998 ◽  
Vol 78 (1) ◽  
pp. 163-169 ◽  
Author(s):  
J. S. Bhatti ◽  
N. W. Foster ◽  
P. W. Hazlett

Vertical distribution of fine root biomass and nutrient content was examined within a black spruce (Picea mariana) stand growing on a boreal peat soil in northeastern Ontario. The influence of site physical and chemical properties on fine root biomass production was assessed. More then 80% of the fine roots were present in moss plus the top 10 cm of peat where nutrients and aeration are most favourable. The fine root biomass (W/V) was significantly higher with alder (5.9 kg m−3) (Alnus rugosa) as understory vegetation compared to non-alder locations (2.9 kg m−3). Total nutrient content in fine roots was 54, 3.2, 5.4, 63 and 5.7 kg ha−1 on the alder site and 20, 1.4, 2.3, 28 and 4.2 kg ha−1 of N, P, K, Ca, and Mg on the non-alder site, respectively. The mass (W/V) of nutrients in fine roots was strongly dependent upon the availability of nutrients in the peat. Fine root content had a strong positive relationship with peat available P and exchangeable K contents suggesting that P and K may be limiting nutrients for black spruce in this peat soil. Key words: Nitrogen, phosphorus, potassium, boreal peatlands, aeration, water table


2020 ◽  
Vol 25 (1) ◽  
pp. 24-29
Author(s):  
Krishna Prasad Bhattarai ◽  
Tej Narayan Mandal ◽  
Tilak Prasad Gautam

The present study was conducted to understand the effect of altitude on the nutrient concentration, nutrient stock, and uptake in the fine root of the Terai Sal forest (TSF) and Hill Sal forest (HSF) in eastern Nepal. Annual mean fine root biomass in 0-30 cm soil depth was found higher in HSF (6.27 Mg ha-1) than TSF (5.05 Mg ha-1). Conversely, fine root production was higher in TSF (4.8 Mg ha-1 y-1) than HSF (4.12 Mg ha-1 y-1). Nitrogen, phosphorus, and potassium content in fine roots were slightly higher in TSF than HSF. Nutrient concentration in fine roots of smaller size (<2 mm diameter) was nearly 1.2 times greater than that of larger size (2–5 mm diameter) in both forests. In HSF total stock of different nutrients (kg ha-1) in fine root was 55.62 N, 4.99 P, and 20.15 K whereas, these values were 49.49 N, 4.14 P, and 19.27 K only in TSF. However, total nutrient uptake (kg ha-1y-1) by fine root (both size classes) was greater in TSF (48.5 N, 4.3 P, and 18.6 K) than HSF (36.9 N, 3.3 P, and 13.5 K). The variability in fine root nutrient dynamics between these two forests was explained by the differences in fine root biomass and production which were influenced by the combined effect of varied altitude and season. The fine root, as being a greater source of organic matter, the information on its nutrient dynamics is inevitable for the management of soil nutrients in the forest ecosystem.


2021 ◽  
Author(s):  
Rachita Pandey ◽  
Surendra Singh Bargali ◽  
Kiran Bargali

Abstract Fine roots (≤ 2 mm of diameter) contribute diminutive fractions of the overall tree biomass but are highly zestful and functionally remarkable component for assessing forest carbon and nutrient budgets. This study assessed how tree girth influenced fine root biomass (FRB), production (FRP) and turnover rate (FRT) in sub tropical sal forest.Four sites (S1, S2, S3, S4) were established in the bhabhar region of Nainital district, Uttarakhand, India within an elevational range of 405m and 580m. On the basis of girth size, sal trees were categorized in five girth size classes. Fine roots were sampled seasonally to a depth of 60 cm and divided into 3 layers (0-20, 20-40 and 40-60 cm).FRB was significantly affected by tree girth size (p< 0.05) while FRP and FRT showed insignificant effect. FRB was higher in lower girth classes (A-C) as compared to higher girth classes (D-E).Seasonal variation of FRB in all girth sizes showed a keen resemblance as the standing FRB reached pinnacle during rainy season and reached bottom-line in the winter season. Maximum FRB was reported for uppermost organo-mineralic soil depth (0-20 cm) at 1 m distance from tree bole and decreased with increasing soil depth and distance from tree bole while FRT showed a reverse trend. The present study will provide a holistic outlook on variations in FRB, FRP and FRT and the impact of edaphic characteristics and tree girth on fine root dynamics with respect to the studied forest stands.


Author(s):  
Roger W. Ruess ◽  
Ronald L. Hendrick

The patterns of production described in Chapter 11 tell only half of the story about boreal forest production because a large proportion of the carbon (C) acquired by plants is allocated belowground in ways that have traditionally been extremely difficult to quantify. Work in the Bonanza Creek LTER provides considerable insight into the patterns, causes, and consequences of this belowground C allocation. Belowground allocation has a number of important ecosystem consequences beyond the simple fact that C allocated belowground comes at the expense of aboveground growth. Belowground and aboveground tissues differ substantially in the rates of C and nitrogen (N) incorporation into new tissue, the ratio of growth to respiration, and the rate of tissue decay. For example, despite the small biomass of fine roots relative to aboveground tissues in forest ecosystems, disproportionate amounts of C and N cycle annually through fine roots, which grow, die, and decompose very rapidly and have high N concentrations (Hendrick and Pregitzer 1992, Ruess et al. 1996, 2003). The objectives of this chapter are to (1) summarize our understanding of the structure and function of fine-root systems in forest types within the Bonanza Creek Experimental Forest, (2) compare our findings with the results of studies of other boreal and temperate ecosystems in order to develop a broader understanding of fine-root function, and (3) identify critical research gaps in our understanding of the role of fine-root systems in boreal ecosystem function. Fine roots grow more rapidly than the rest of the root system in a forest and are responsible for the bulk of nutrient and water acquisition. Until recently, fine roots were defined rather arbitrarily as roots less than 1–2 mm in diameter, while roots larger than this were considered coarse roots. Only one data set for fine and coarse root biomass has been published for interior Alaskan forests (Ruess et al. 1996), which shows (1) live fine-root biomass ranging from 221 g m-2 in floodplain white spruce stands to 832 g m-2 in upland birch-aspen stands, (2) a positive correlation between fine-root and coarse-root biomass, with coarse-root biomass averaging 50% greater than fine roots, and (3) no relationship between aboveground biomass and fine or coarse root biomass.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Serdar Akburak ◽  
Ender Makineci

Abstract Background Thinning is a commonly used treatment in forest management which affects the tree root systems. The effects of thinning on element concentrations and seasonal change of roots were evaluated in adjacent oak (Quercus frainetto Ten.) and hornbeam (Carpinus betulus L.) stands according to the different root diameter classes. Method Two replicated control and thinning plots (50 m × 50 m) were set for each species (hornbeam and oak). Thinning treatments (November 2010) reduced 50% of the basal area in both oak and hornbeam stands. Roots were assessed by seasonal collection over 2 years (from October 2010 to October 2012). The roots were then sorted into diameter classes of 0–2 mm (fine roots), 2–5 mm (small roots) and > 5 mm (coarse roots). C, N, P, K, Ca, Na, Mg, S, Mn, Fe, Al, Zn, Pb, Ni, Cu and Cd were analyzed. Results Except coarse roots, the highest root biomasses were determined in April-2011 in all plots. Fine-root biomass in oak was found significantly higher in control plots. In contrast to the oak, the fine-root biomass in the thinned hornbeam plots was higher than in the controls. The small-root biomass did not significantly differ between the thinned and the control plots in both oak and hornbeam stands. However, the coarse-root biomass showed significant differences between the control (1989 g∙m− 2) and thinned plots (1060 g∙m− 2) in oak, while no difference was detected in hornbeam. The concentrations of C, Al, Pb, Cd, Ni, Zn, Mn, Na, K, Mg and P in the fine roots of oak were significantly higher in the thinned plots. However, the concentration of Pb, Cd and Fe in the fine roots was significantly higher in the thinned plots of hornbeam. Significant differences were observed between the species for all elements in the fine roots except for C, N and P. In particular, elements in the fine roots tended to increase in July in the oak. In the hornbeam, all element concentrations in the fine roots (except C, N, and S) in the thinned plots showed a tendency to increase in April. The concentrations of Pb, Ni, Al, Fe, Cu, Ca, Na, K, Mg and P in the hornbeam control plots increased during the April 2011 period. Conclusion The results indicated that thinning effects on temporal changes and concentrations of elements in the roots could be attributed to species-specific characteristics.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1227
Author(s):  
Moein Farahnak ◽  
Keiji Mitsuyasu ◽  
Takuo Hishi ◽  
Ayumi Katayama ◽  
Masaaki Chiwa ◽  
...  

Tree root system development alters forest soil properties, and differences in root diameter frequency and root length per soil volume reflect differences in root system function. In this study, the relationship between vertical distribution of very fine root and soil water content was investigated in intact tree and cut tree areas. The vertical distribution of root density with different diameter classes (very fine <0.5 mm and fine 0.5–2.0 mm) and soil water content were examined along a slope with two coniferous tree species, Cryptomeria japonica (L.f.) D. Don and Chamaecyparis obtusa (Siebold et Zucc.) Endl. The root biomass and length density of very fine roots at soil depth of 0–5 cm were higher in the Ch. obtusa intact tree plot than in the Cr. japonica intact plot. Tree cutting caused a reduction in the biomass and length of very fine roots at 0–5 cm soil depth, and an increment in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot one year after cutting. However, very fine root density of the Cr. japonica intact tree plot was quite low and the soil water content in post-harvest areas did not change. The increase in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot could be caused by the decrease in very fine roots at 0–5 cm soil depth. These results suggest that the distribution of soil water content was changed after tree cutting of Ch. obtusa by the channels generated by the decay of very fine roots. It was also shown that differences in root system characteristics among different tree species affect soil water properties after cutting.


2001 ◽  
Vol 31 (5) ◽  
pp. 786-796 ◽  
Author(s):  
Britta Widén ◽  
Hooshang Majdi

Soil CO2 efflux and respiration of excised roots were measured with a LI-COR 6200 at three sites in a mixed forest (60°05'N, 17°3'E), from May to October 1999, both day and night. Fine-root (<5 mm in diameter) respiration was measured at ambient root temperature and soil CO2 partial pressure, and the roots were analysed for nitrogen (N) concentration. Root-density data obtained from soil cores were used to estimate fine-root biomass. Coarse-root respiration was estimated using stand data, literature data, and allometric relationships. Soil CO2 efflux, 3.0–7.0 µmol·m–2·s–1, differed between sites but showed no diurnal variation. Maximum values were obtained in July through August. Fine-root respiration, 0.3–4.7 nmol·g–1·s–1, decreased after peaking in early July and showed no diurnal variation. The seasonal mean was lowest at the South site, where also root distribution patterns were different and root N concentrations were lower. Fine-root respiration increased with root N concentration; however, the relationship was very weak, since the variation in root N concentration between sites and times of year was small. Both soil CO2 efflux and fine-root respiration increased exponentially with soil and root temperature, respectively, although fine-root respiration was twice as sensitive. The percentage of soil CO2 efflux emanating from roots was 33–62% in May, thereafter decreasing to 12–16% in October. This, in combination with larger temperature sensitivity for fine-root respiration, is suggested to cause the temperature sensitivity of soil CO2 efflux to diminish over the season.


2009 ◽  
Vol 55 (No. 11) ◽  
pp. 502-510 ◽  
Author(s):  
P. Jaloviar ◽  
L. Bakošová ◽  
S. Kucbel ◽  
J. Vencurik

The fine root biomass represents 3,372 kg/ha in the intermediate stage of the beech virgin forest with different admixture of goat willow, where the vast majority of this biomass is located in the uppermost mineral soil layer 0–10 cm. The variability of the fine root biomass calculated from 35 sample points represents approximately 90% of the mean value and reaches the highest value within the humus layer. The total fine root length investigated in 10 cm thick soil layers decreases with increasing soil depth. A significant linear relationship between the fine root length (calculated per 1 cm thick soil layer and 1 m<sup>2</sup> of stand area) and the soil depth was confirmed, although the correlation is rather weak. The number of root tips decreases with increasing soil depth faster than the root length. As the number of tips per 1 cm of root length remains in the finest diameter class without significant changes, the reason is above all a decreased proportion of the finest root class (diameter up to 0.5 mm) from the total fine root length within the particular soil layer.


1986 ◽  
Vol 16 (6) ◽  
pp. 1360-1364 ◽  
Author(s):  
S. K. Srivastava ◽  
K. P. Singh ◽  
R. S. Upadhyay

Temporal variations in the spatial distribution of fine root mass were studied in a 19-year-old teak plantation in a dry tropical region. The soil block method was used to investigate fine root dynamics. Quantification of fine root mass was achieved in terms of live teak roots (separated by diameter), dead teak roots, teak root bark, herb roots, and fragmented soil organic matter. The annual mean fine root biomass was 5420 kg•ha−1 and the net production was 5460 kg•ha−1•year−1. The bulk of the root mass was distributed at a depth of 10–30 cm and roots ≤2 mm constituted one-half or more of the total root biomass. Maximum live root growth occurred during the rainy season. All root sizes showed similar bimodal seasonal patterns, but the maximum:minimum ratio generally declined with greater root size.


Sign in / Sign up

Export Citation Format

Share Document